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We study curves of positive solutions for a system of elliptic equations of
Hamiltonian type on a unit ball. We give conditions for all positive
solutions to lie on global solution curves, allowing us to use the analysis
similar to the case of one equation, as developed in P. Korman, Y. Li and
T. Ouyang [An exact multiplicity result for a class of semilinear equations,
Commun. PDE 22 (1997), pp. 661–684.] (see also T. Ouyang and J. Shi
[Exact multiplicity of positive solutions for a class of semilinear problems, II,
J. Diff. Eqns. 158(1) (1999), pp. 94–151].). As an application, we obtain
some non-degeneracy and uniqueness results. For the one-dimensional case
we also prove the positivity for the linearized problem, resulting in more
detailed results.
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1. Introduction

We apply bifurcation theory approach to a system of Hamiltonian equations on a
unit ball, with Dirichlet boundary conditions

Duþ �Hvðu, vÞ ¼ 0 for jxj5 1, u ¼ 0 for jxj ¼ 1,

Dvþ �Huðu, vÞ ¼ 0 for jxj5 1, v ¼ 0 for jxj ¼ 1,
ð1:1Þ

where H(u, v) is a given function and � is a positive parameter. We assume that Hvv

and Huu are positive, i.e. this system is of ‘cooperating’ type. Then according to Troy
[1], any positive solution is radially symmetric, i.e. u¼ u(r) and v¼ v(r), r¼ jxj, and
moreover u0(r)50, v0(r)50, so that u(0) and v(0) give the maximal values of
respective functions. We shall also assume that Huv� 0. According to Korman and
Shi [2], the value of u(0) alone uniquely identifies the solution triple (�, u(r), v(r)). We
show that the positive solutions of (1.1) lie on global solution curves, i.e. at any
solution, either the implicit function theorem or the Crandall–Rabinowitz
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bifurcation theorem applies. By the above remarks these solution curves can be
faithfully represented by two-dimensional curves in (�, u(0)) plane. We then identify
a special class of systems, for which one can write down the solution of the linearized
system at any singular solution (this includes the turning points). We obtain a new
non-degeneracy result for power non-linearities, which results in a simple proof of
uniqueness. Moreover, we show that all solutions lie on a unique solution curve, and
describe this curve for both sublinear and superlinear cases. We use methods of
bifurcation theory, as developed in [3] and [4], see also [5] for a review. For recent
reviews of work on elleptic systems see [6] and [7].

We get considerably more detailed results for the one-dimensional case. We show
that any non-trivial solution of the corresponding linearized problem can be assumed
to be positive (in both components). This gives us more general, and more detailed
results. In particular, we give a complete description of solution curve for a class of
equations, modelling the case of freely supported elastic beam.

To continue the solutions, our main tool is the Crandall–Rabinowitz bifurcation
theorem [8], which we recall next.

THEOREM [8] Let X and Y be Banach spaces. Let ð�, xÞ 2R� X and F be a
continuously differentiable mapping of an open neighbourhood of ð�, xÞ into Y. Let the
null-space NðFxð�, xÞÞ ¼ spanfx0g be one-dimensional and codimRðFxð�, xÞÞ ¼ 1. Let
F�ð�, xÞ =2RðFxð�, xÞÞ. If Z is a complement of span{x0} in X, then the solutions of
Fð�, xÞ ¼ Fð�, xÞ near ð�, xÞ form a curve ð�ðsÞ, xðsÞÞ ¼ ð�þ �ðsÞ, xþ sx0 þ zðsÞÞ, where
s! (�(s), z(s))2R�Z is a continuously differentiable function near s¼ 0 and
�(0)¼ �0(0)¼ 0, z(0)¼ z0(0)¼ 0.

2. Preliminary results

We consider a linear system for w(r) and z(r) on a unit ball

w00ðrÞ þ
n� 1

r
w0ðrÞ þ aðrÞwþ bðrÞz ¼ 0, 05 r5 1,

z00 þ
n� 1

r
z0 þ cðrÞwþ d ðrÞz ¼ 0, 05 r5 1,

w0ð0Þ ¼ z0ð0Þ ¼ wð1Þ ¼ zð1Þ ¼ 0:

ð2:1Þ

LEMMA 2.1 Assume that the given continuous functions a(r), b(r), c(r) and d(r) satisfy

aðrÞ � 0, d ðrÞ � 0, bðrÞ4 0, cðrÞ4 0 for all r2 ½0, 1Þ: ð2:2Þ

Then for any solution of (2.1), z0(1) and w0(1) are both non-zero, and have the same sign.

Proof Step 1 We claim that z0(1) and w0(1) cannot be of the opposite sign. Assume
on the contrary that w0(1)50, while z0(1)40. By continuity,

w0ðrÞ5 0, and z0ðrÞ4 0 for r close to 1: ð2:3Þ

Let r0� 0 denote the infimum of r’s for which (2.3) holds. We shall assume that
w0(r0)¼ 0, since the other case, when z0(r0)¼ 0, is similar. Observe that w00(r0)� 0
(the opposite inequality w00(r0)40 together with w0(r0)¼ 0, would imply that w0(r)40
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to the right of r0, contradicting (2.3)). From (2.3) and the boundary conditions we
also conclude that w(r0)40 and z(r0)50. Hence, the left-hand side of the first
equation in (2.1) is negative at r0, a contradiction, proving that (2.3) holds for all
r� 0. But that contradicts the boundary conditions at r¼ 0.

Step 2 If (w, z) is a non-trivial solution of (2.1), then we may assume that w(r) and
z(r) are both positive near r¼ 1.

To prove that, we begin by noticing that by uniqueness for initial value problems,
w0(1) and z0(1) cannot both be zero. We may assume that w0(1)50, and then by the
Step 1, z0(1)� 0. Clearly, w(r) and w0(r) are positive near r¼ 1, say on the interval
(�, 1), for some �. If z(r) failed to be positive near r¼ 1, then there are two
possibilities. The first possibility is that z0(1)¼ 0 and z(r)50 on some interval (�1, 1),
with ���1. Then we can find a point r12 (�1, 1), such that w(r1)40, w0(r1)50, and
z(r1)50, z0(r1)40. As above, we show that these inequalities imply that w0(r)50 and
z0(r)40 for all r2 [0, r1], with a contradiction at r¼ 0. The second possibility is that
z(r) has infinitely many roots on the interval (�, 1). But then we have a contradiction
in the second equation of (2.1), at any point of negative minimum of z(r).

Step 3 Since z(r) is positive near r¼ 1, we have w00ðrÞ þ n�1
r w0ðrÞ þ aðrÞw � 0 near

r¼ 1, and hence w0(1)50 by the Hopf’s boundary lemma (see, e.g. [9], p. 107).
Similarly, z0(1)50.

LEMMA 2.2 Under the condition (2.2), the solution space of the system (2.1) is
one-dimensional (i.e. solution (w, z) is a constant multiple of any other solution ð �w, �zÞ).

Proof If we denote p¼ u0(1) and q¼ v0(1), then the vector (p, q) uniquely identifies
any solution of the system (2.2) (i.e. the system (2.2) has at most one solution, with
these initial conditions). For any constant t, the vector (tp, tq) uniquely identifies the
constant multiple of the same solution. If the vector (p1, q1) gives rise to another
solution of (2.2), then the same is true for the vector (pþ p1, qþ q1), by linearity. So,
if the set of vectors (p, q), giving rise to solutions of (2.2), is not one-dimensional, it
is all of R2. But the vector (1,�1) does not belong to that set by Lemma 2.1, a
contradiction. g

Remark In general, the solution space of (2.1) may be two-dimensional, even in
case n¼ 1 (see [10]).

3. Global solution curves for a class of systems

Given a function Hðu, vÞ 2C2ð �Rþ� �RþÞ, we consider positive solutions (i.e. u40 and
v40) of the system

Duþ �Hvðu, vÞ ¼ 0 for jxj5 1, u ¼ 0 for jxj ¼ 1,

Dvþ �Huðu, vÞ ¼ 0 for jxj5 1, v ¼ 0 for jxj ¼ 1,
ð3:1Þ

depending on a positive parameter �. We shall assume that

Hvv 4 0, and Huu 4 0 for all ðu, vÞ4 0: ð3:2Þ

By Troy’s [1] extension of the classical results of [11], under the condition (3.2) any
positive solution of (3.1) is radially symmetric, i.e. u¼ u(r) and v¼ v(r), r¼ jxj, and
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so (3.1) becomes a system of ODE’s

u00 þ
n� 1

r
u0 þ �Hvðu, vÞ ¼ 0 for r5 1, u0ð0Þ ¼ uð1Þ ¼ 0,

v00 þ
n� 1

r
v0 þ �Huðu, vÞ ¼ 0 for r5 1, v0ð0Þ ¼ vð1Þ ¼ 0:

ð3:3Þ

We shall also assume that

Huv � 0, for all ðu, vÞ � 0: ð3:4Þ

According to Korman and Shi [2], under the conditions (3.2) and (3.4), the value of

u(0) alone (or of v(0)) uniquely identifies the solution triple (�, u(r), v(r)), i.e. the value
of u(0) can be used as a global parameter on solution curves. We shall need the

linearized problem, corresponding to (3.3)

w00 þ
n� 1

r
w0 þ �Huvwþ �Hvvz ¼ 0 for r5 1, w0ð0Þ ¼ wð1Þ ¼ 0,

z00 þ
n� 1

r
z0 þ �Huuwþ �Huvz ¼ 0 for r5 1, z0ð0Þ ¼ zð1Þ ¼ 0:

ð3:5Þ

We call solution (u, v) of (3.3) singular if the linearized system (3.5) has a non-trivial

solution. By Lemma 2.2 the solution set of (3.5) is one-dimensional under our

assumptions.

LEMMA 3.1 Assume that a positive solution (u, v) of (3.3) is singular, i.e. the linearized

system (3.5) has a non-trivial solution (w, z). Then

Z 1

0

Hvðu, vÞzþHuðu, vÞwð Þ rn�1 dr ¼
1

2�
v0ð1Þw0ð1Þ þ u0ð1Þz0ð1Þð Þ:

Proof One checks that the functions p(r)¼ rur, q(r)¼ rvr satisfy the system

p00 þ
n� 1

r
p0 þ �Hvupþ �Hvvq ¼ �2�Hv,

q00 þ
n� 1

r
q0 þ �Huupþ �Huvq ¼ �2�Hu:

ð3:6Þ

We multiply the first equation in (3.5) by q, and subtract from that the first equation

in (3.6), multiplied by z. The result can be put into the form

qw0 � zp0ð Þ
0
�q0w0 þ z0p0 þ

n� 1

r
qw0 � zp0ð Þ

þ �Hvuwq� �Hvuzp ¼ 2�Hvz:
ð3:7Þ

Similarly, we multiply the second equation in (3.5) by p, and subtract from that the

second equation in (3.6), multiplied by w. The result can be put into the form

pz0 � wq0ð Þ
0
� z0p0 þ q0w0 þ

n� 1

r
pz0 � wq0ð Þ

þ �Huvzp� �Huvqw ¼ 2�Huw:
ð3:8Þ
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We now add Equations (3.7) and (3.8), and put the result in the form

rn�1 qw0 � zp0ð Þ
� �0

þ rn�1 pz0 � wq0ð Þ
� �0

¼ rn�1 2�Hvzþ 2�Huwð Þ:

Integrating over the interval (0, 1), we conclude the proof. g

Positive solutions of the system (3.1) satisfy u0(1)� 0, v0(1)� 0. We shall assume
that one of these derivatives is non-zero:

ju0ð1Þj þ jv0ð1Þj4 0: ð3:9Þ

For concrete systems, this condition will usually follow by the Hopf’s boundary
lemma.

THEOREM 3.9 Assume that the conditions (3.2), (3.4) and (3.1) are satisfied for the
system (3.1). Then all positive solutions of (3.1) lie on global continuous
non-intersecting curves in (�, u(0)) plane (or in (�, v(0)) plane).

Proof We show that at any positive solution of (3.1) either the implicit function
theorem or the Crandall–Rabinowitz bifurcation theorem applies, and hence we can
always continue the solutions (that is what we mean by ‘the global curves’). To recast
our system in the operator form, we define the spaces X¼ {(u(r), v(r))j u, v2C2,�[0, 1),
u0(0)¼ u(1)¼ v0(0)¼ v(1)¼ 0} and Y¼ {(u(r), v(r))ju, v2C�[0, 1)}, and consider
the map

Fðu, vÞ ¼
u00 þ n�1

r u0 þ �Hvðu, vÞ

v00 þ n�1
r v0 þ �Huðu, vÞ

 !
: X!Y:

Clearly, our system (3.3) can be recast in the form F(u, v)¼ 0, and the system (3.5)
gives the linearized problem.

We claim that the linearized operator F(u,v)(p, q) is a Fredholm operator of index
zero. This can be seen by recasting the linearized equations as a system of two
integral equations, and then the solution operator defines a compact operator on the
product space Y!Y, so that we can use the Riesz–Schauder theory of compact
operators. If (3.5) has only the trivial solution, then F(u,v)(p, q) is one-to-one, and
hence onto, and the implicit function theorem applies, and we can continue the
solution to nearby �’s. Now assume that at some ð ��, �u, �vÞ the system (3.5) has a
non-trivial solution. Then by Lemma 2.2 the solution set of (3.5), i.e. the null-space
of Fðu,vÞð �u, �vÞ is one-dimensional. Hence, the range of the map Fðu,vÞð �u, �vÞ has
codimension one. To apply the Crandall–Rabinowitz Theorem 1.1, it remains to
show that F�ð�, xÞ =2RðFxð�, xÞÞ, with �x ¼ ð �u, �vÞ. Assuming otherwise, there would
exist (W(x),Z(x))2X so that

W00 þ
n� 1

r
W0 þ �HuvWþ �HvvZ ¼ Hv, W0ð0Þ ¼Wð1Þ ¼ 0,

Z00 þ
n� 1

r
Z0 þ �HuuWþ �HuvZ ¼ Hu, Z0ð0Þ ¼ Zð1Þ ¼ 0:

Proceeding the same way as in the derivation of (3.8) from (3.6), we getZ 1

0

Hvðu, vÞzþHuðu, vÞwð Þ rn�1 dr ¼ 0:

However by Lemma 3.1, and our assumptions, this integral is not zero, a
contradiction. g
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4. Special systems

We consider positive solutions of the system

u00 þ
n� 1

r
u0 þ f ðvÞ ¼ 0 for r5 1, u0ð0Þ ¼ uð1Þ ¼ 0,

v00 þ
n� 1

r
v0 þ gðuÞ ¼ 0 for r5 1, v0ð0Þ ¼ vð1Þ ¼ 0,

ð4:1Þ

which is a subclass of the system (3.1) (or of the system (3.3)). (Here
H(u, v)¼F(v)þG(u), where F and G are anti-derivatives of f and g respectively.)
To be consistent with the conditions of Theorem 3.1, we shall assume that

f ð0Þ � 0, gð0Þ � 0 and f 0ðtÞ4 0 , g0ðtÞ4 0 for all t4 0: ð4:2Þ

The corresponding linearized problem is

w00 þ
n� 1

r
w0 þ f 0ðvÞz ¼ 0 for r5 1, w0ð0Þ ¼ wð1Þ ¼ 0,

z00 þ
n� 1

r
z0 þ g0ðuÞw ¼ 0 for r5 1, z0ð0Þ ¼ zð1Þ ¼ 0:

ð4:3Þ

We shall also consider a linear problem

p00 þ
n� 1

r
p0 þ f 0ðvÞq ¼ 0 for r5 1, p0ð0Þ ¼ 0,

q00 þ
n� 1

r
q0 þ g0ðuÞ p ¼ 0 for r5 1, q0ð0Þ ¼ 0,

ð4:4Þ

which is different from (4.3), as we do not impose the boundary conditions at r¼ 1.
For some systems it is possible to write down explicitly the solution of the

problem (4.4).

THEOREM 4.1 Assume that (u, v) is any positive solution of (4.1). Assume that the
functions f(t) and g(t) are both of one of the two forms ceat or c(tþ b)s, with some
positive constants a, b, c and p (i.e. either one of four possible combinations holds). In
case f(t)¼ c(tþ b)p1 and g(t)¼ c(tþ b1)

p2, we assume additionally that p1p2 6¼ 1. Then
there is a simple formula, expressing a solution (p, q) of (4.4) through (u, v).

Proof Let p(r)¼ ru0(r)þ�1u(r)þ � and q(r)¼ rv0(r)þ�2v(r)þ�. These functions
satisfy

p00 þ
n� 1

r
p0 þ f 0ðvÞq ¼ �2f� �1 fþ �2vf

0 þ �f 0,

q00 þ
n� 1

r
q0 þ g0ðuÞ p ¼ �2g� �2gþ �1ug

0 þ �g0:

ð4:5Þ

Our goal is to choose the constants �1, �2, � and � to make both quantities on the
right to be zero. If both f and g are exponentials, f(v)¼ ae�v and g(u)¼ be�u, we take
�1¼�2¼ 0, � ¼ 2

� and � ¼
2
�. In the ‘mixed’ case f(v)¼ ae�v and g(u)¼ b(uþ �)p, we

select �2¼ 0, then �1 ¼
2
p and � ¼

2�
p , followed by � ¼ 2þ�1

� . Finally, if both f and g
are powers, f(v)¼ a(vþ �)p1 and g(u)¼ b(uþ �)p2, we set �¼�2� and �¼�1�.
We then need to select �1 and �2, so that

��1 þ p1�2 ¼ 2,

p2�1 � �2 ¼ 2,

i.e. �1 ¼
2p1 þ 2
p1p2 � 1 and �2 ¼

2p2 þ 2
p1p2 � 1. g
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Remark It is natural to ask if (w, z)¼ (p, q). In the case of one equation such result

follows by scaling, but for systems only one of the unknown functions can be scaled

to take a desired value. If one could prove that (w, z)¼ (p, q) is true for systems, then

for n¼ 2 it would follow that (w, z)40, leading to some exact multiplicity results,
similar to [12].

THEOREM 4.2 Assume that f(v)¼ vp1 and g(u)¼ up1, with p1p2 6¼ 1. Then any positive
solution of (4.1) is non-singular, i.e. the corresponding linearized problem (4.3) has only

the trivial solution.

Proof Assume on the contrary that (w, z) is a non-trivial solution of (4.3). By the
preceding result, we can find a solution of the problem (4.4) in the form p¼ rurþ�1u

and q¼ rvrþ�2v. It follows by the Hopf’s boundary lemma that

pð1Þ ¼ u0ð1Þ5 0, qð1Þ ¼ v0ð1Þ5 0: ð4:6Þ

By scaling (w, z), we can achieve w(0)¼ p(0). We then have z(0) 6¼ q(0) (otherwise by

uniqueness for initial value problems, (w, z)¼ (p, q), but the pair (p, q) does not
satisfy the boundary condition at r¼ 1). Assume for definiteness that z(0)4q(0). Call

P¼ p�w and Q¼ q� z. Then the pair (P,Q) satisfies the same linear system (4.3),

which we write in the following form:

ðrn�1P0Þ0 ¼ �rn�1f 0ðvÞQ, Pð0Þ ¼ 0, P0ð0Þ ¼ 0,

ðrn�1Q0Þ0 ¼ �rn�1g0ðuÞP, Qð0Þ5 0, Q0ð0Þ ¼ 0:
ð4:7Þ

By continuity, for r¼ 0 small

QðrÞ5 0: ð4:8Þ

It follows from the first equation in (4.7) that the function rn�1P0 is positive, and so

P(r) is positive and increasing, i.e. for small r

PðrÞ4 0: ð4:9Þ

But then integrating the second equation in (4.7), we see that Q0(r)50, i.e. Q(r) is

decreasing, and so the inequality (4.8) continues to hold. We see that the inequalities

(4.8) and (4.9) ‘reinforce’ each other, so they both hold for r2 (0, 1]. At r¼ 1, we have

05P(1)¼ p(1)�w(1)��w(1), i.e. w(1)50, a contradiction. g

As an application, we can give a complete description of the solution set for the

following system.

THEOREM 4.3 Consider the system

Duþ �vp1 ¼ 0 for jxj5 1, u ¼ 0 for jxj ¼ 1,

Dvþ �up2 ¼ 0 for jxj5 1, v ¼ 0 for jxj ¼ 1,
ð4:10Þ

with given constants p1 and p2, satisfying p1p2 6¼ 1, and � a positive parameter. Then all

positive solutions of (4.10) are radially symmetric, and they lie on a unique continuous

curve in (�, u(0)) plane (or in (�, v(0)) plane). Moreover, all solutions are non-singular,

and so the solution curve admits no turns. In the sublinear case, when p1p251, there is a
curve of solutions, starting at �¼ 0, u(0)¼ 0, and continuing without any turns

to �¼1, u(0)¼1, with both components of (�, u(0)) strictly increasing. In the
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superlinear case, when p1p241, if the problem (4.10) has a positive solution at some �,
then all solutions lie on a unique curve of solutions, on which � is increasing and u(0) is
decreasing, and u(0)! 0 as �!1, while u(0)!1 as �! 0.

Proof In the sublinear case, there exists a positive solution for any � (see e.g.
[10,13]). In the superlinear case, some restrictions on p1 and p2 are necessary, see, e.g.
[14] for the conditions on p1 and p2 ensuring existence of positive solutions. By
Theorem 4.2, any solution of (4.10) is non-singular, and hence by the implicit
function theorem we can continue this solution in �, on a solution curve, which does
not turn. By Korman and Shi [2], the value of u(0) changes monotonously on the
curve. The rest follows by a simple scaling. Indeed, if we let u¼ �U and v¼ �V, with

�
p1p2�1

p1þ1 ¼ 1
� and � ¼ �

p2þ1

p1þ1, we see that (U,V ) satisfies the problem (4.10), with �¼ 1. It
follows that in the sublinear (superlinear) case, solutions tend to infinity (zero) as
�!1, and to zero (infinity) as �! 0. Since any solution curve ‘takes up’ all
possible values of u(0), it follows that there is only one solution curve. g

Remarks

(1) The result is not true in case p1p2¼ 1. In fact, if p1p2¼ 1, and the problem
(4.10) has a non-trivial solution (u, v), then it has a continuum of solutions of
the form (�u, �1/p1v) for any �40. Presumably, in this case the problem has
non-trivial solutions only for a sequence of eigenvalues. In case p1¼ p2¼ 1,
this is not hard to prove.

(2) Since solutions are non-singular, they persist under small perturbations of the
system.

In the superlinear case, when 1 � p, q � nþ2
n�2, pq 6¼ 1, a notion of critical hyperbola

was introduced in [14,15]:

1

p1 þ 1
þ

1

p2 þ 1
¼ 1�

2

n
:

It extends the notion of critical exponent from the scalar case. It turns out that the
problem (4.10) is solvable in the subcritical case

1

p1 þ 1
þ

1

p2 þ 1
4 1�

2

n
:

The above result describes the solution curve in that case.

5. Positivity of solution of the linearized equation, in case n^1

In case of space dimension equal to one, the system (3.1) takes the form (here
u¼ u(x) and v¼ v(x))

u00 þ �Hvðu, vÞ ¼ 0 for �15 x5 1, uð�1Þ ¼ uð1Þ ¼ 0,

v00 þ �Huðu, vÞ ¼ 0 for �15 x5 1, vð�1Þ ¼ vð1Þ ¼ 0:
ð5:1Þ

Corresponding linearized problem is

w00 þ �Hvuwþ �Hvvz ¼ 0 for �15 x5 1, wð�1Þ ¼ wð1Þ ¼ 0,

z00 þ �Huuwþ �Huvz ¼ 0 for �15 x5 1, zð�1Þ ¼ zð1Þ ¼ 0:
ð5:2Þ
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THEOREM 5.1 Assume that the conditions (3.2), (3.4) and (3.9) hold. Assume also that

Hv4 0 and Hu 4 0 for all ðu, vÞ4 0: ð5:3Þ

Then any non-trivial solution of (5.2) can be chosen to be positive on (�1, 1)

(i.e. w(x)40 and z(x)40).

Proof Recall that by [1], u(x) and v(x) are both even functions, with u0(x)50 and

v0(x)50 on (0, 1). We claim that the functions w(x) and z(x) are even too. Indeed,

assuming otherwise, (w(�x), z(�x)) would give us another solution of (5.2), linearly

independent from (w(x), z(x)), contradicting Lemma 2.2. Differentiating the system

(5.1), and denoting p¼ u0 and q¼ v0, we have

p00 þ �Hvupþ �Hvvq ¼ 0,

q00 þ �Huupþ �Huvq ¼ 0:
ð5:4Þ

By our condition (5.3), p0 ¼ u0050 and q0 ¼ v0050. Multiply the first equation in (5.2)

by q, and subtract that from the first equation in (5.4), multiplied by z:

w00q� p00zþ �Hvuwq� �Hvupz ¼ 0:

Similarly, from the second equation we obtain

z00p� q00wþ �Huvzp� �Hvuwq ¼ 0:

Adding these we get

w0q� p0zþ z0p� q0wð Þ
0
¼ 0,

i.e. I(x)�w0q� p0zþ z0p� q0w¼ constant. By Lemma 2.1 we may assume that

w0ð1Þ5 0 and z0ð1Þ5 0: ð5:5Þ

In view of (3.9), we then have

IðxÞ ¼ Ið1Þ ¼ w0ð1Þv0ð1Þ þ z0ð1Þu0ð1Þ4 0: ð5:6Þ

By (5.5), w(x) and z(x) are both positive near x¼ 1. Assume contrary to what we

want to prove that w(x) vanishes on (0, 1). Then z(x) also vanishes on (0, 1), since if

z(x) is positive, then w would be positive by the maximum principle. Let 	 denote the
largest root of w(x) on (0, 1), and � be the largest root of z(x) on (0, 1). First, assume

that �5	, i.e. z(x)40 on (�, 1). From the first equation in (5.2) we see that w(x)

cannot take negative minimums on (�, 1). This implies that (Figure 1)

wð�Þ5 0 and w0ð�Þ � 0: ð5:7Þ

We then have

Ið�Þ ¼ w0ð�Þqð�Þ þ z0ð�Þ pð�Þ � q0ð�Þwð�Þ5 0, ð5:8Þ

since the first two terms are non-positive, and the third one is negative,

contradicting (5.6).
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The case 	5� is similar, while in the case 	¼ �, we have w(�)¼ 0, and (5.8)

changes to I(�)� 0, which still results in a contradiction. g
We consider next the special case when H(u, v)¼F(v)þG(u), with F 0 ¼ f, G0 ¼ g.

The system (5.1) is then

u00 þ �f ðvÞ ¼ 0 for �15 x5 1, uð�1Þ ¼ uð1Þ ¼ 0,

v00 þ �gðuÞ ¼ 0 for �15 x5 1, vð�1Þ ¼ vð1Þ ¼ 0:
ð5:9Þ

Corresponding linearized problem takes the form

w00 þ �f 0ðvÞz ¼ 0 for �15 x5 1, wð�1Þ ¼ wð1Þ ¼ 0,

z00 þ �g0ðuÞw ¼ 0 for �15 x5 1, zð�1Þ ¼ zð1Þ ¼ 0:
ð5:10Þ

THEOREM 5.2 Assume that we have f(t)40 and g(t)40 for all t40. Assume also that

f 0(t)40 and g0(t)40 for all t40, and in addition assume that

f 0ðtÞ �
f ðtÞ

t
and g0ðtÞ �

gðtÞ

t
for all t4 0, ð5:11Þ

with at least one of these inequalities being strict almost everywhere. Then any positive

solution of (5.9) is non-singular, i.e. the linearized problem (5.10) admits only the trivial

solution w¼ z¼ 0.

Proof The functions u(x) and v(x) are concave, and so (3.9) holds, and Theorem 5.1

applies. Assume on the contrary that the linearized problem (5.10) has a non-trivial

solution, with w40 and z40, in view of Theorem 5.1. We multiply the first equation

in (5.9) by z, and subtract from that the first equation in (5.10) multiplied by v

u00zþ �f ðvÞz� vw00 � �f 0ðvÞzv ¼ 0:

Similarly, we multiply the second equation in (5.9) by w, and subtract from that the

second equation in (5.10) multiplied by u

v00wþ �gðuÞw� uz00 � �g0ðuÞuw ¼ 0:

Adding the results,

u0z� uz0ð Þ
0
þ v0w� vw0ð Þ

0
� � f 0ðvÞ �

f ðvÞ

v

� �
vz� � g0ðuÞ �

gðuÞ

u

� �
uw ¼ 0:

Integrating over (�1, 1), we get a contradiction. g

Figure 1. The functions w(x) and z(x).
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As a very specific application, we consider the following case of a freely
supported elastic beam (p41 is a constant):

u0000 ¼ �ðuþ u pÞ, �15 x5 1,

uð�1Þ ¼ u00ð�1Þ ¼ uð1Þ ¼ u00ð1Þ ¼ 0:
ð5:12Þ

Let us denote by �1 the principal eigenvalue of u0000 on (�1, 1), subject to the
boundary conditions in (5.12).

PROPOSITION 1 The set of positive solutions of (5.12) consists of a single curve,
bifurcating from the trivial solution at �¼ �1. This curve continues without any turns
for all 05�5�1. The maximum value of solution, u(0, �), is monotone increasing on the
curve, and lim�!0 u(0, �)¼1 so that the problem (5.12) has a unique positive solution
for �2 (0, �1), and no positive solution for �� �1.

Proof By standard results (see, e.g. [16]), a curve of positive solutions bifurcates
from zero at �¼ �1, in the direction of decreasing �. We put our problem in the
system form (5.9)

u00 ¼ �v, for �15 x5 1, uð�1Þ ¼ uð1Þ ¼ 0,

v00 ¼ �ðuþ upÞ, for �15 x5 1, vð�1Þ ¼ vð1Þ ¼ 0,
ð5:13Þ

where � ¼
ffiffiffi
�
p

. Theorem 5.2 applies, and so the solution curve continues globally,
without any turns. By [2], u(0) is monotone on the curve, and it tends to infinity.
We claim that the solution curve goes to infinity as �! 0. This follows from the
following a priori estimate: if � belongs to compact subinterval of (0,1), then there
exists a constant M40, such that any solution of (5.12) satisfies

jujC4ð�1,1Þ �M:

The proof of this estimate is almost identical to that of Lemma 2.14 in [17] (even a
little easier, since here u(x) is concave). Finally, since this solution curve ‘takes up’
all possible values of u(0), from zero to infinity, no other positive solutions are
possible. g
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