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Abstract

We consider a semilinear system

Au+ w+bi(v) = f(z), €Q, u=0 forx € N
Av—l-)‘;u—l-bg(u) =g(x), €, v=0 forz €,
whose linear part is at resonance. Here A > 0, the functions by (¢) and ba(t)
are bounded and continuous. Assuming that tb;(t) > 0 for allt € R, i = 1,2,
and the first harmonics of f(z) and g(z) lie on a certain straight line, we prove

existence of solutions. This extends a similar result for one equation, due to
D.G. de Figueiredo and W.-M. Ni [5].
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1 Introduction

Following publication of the classical paper of E.M. Landesman and A.C. Lazer [7],
there has been an enormous interest in nonlinear perturbations of linear equations at
resonance of the type

(1.1) Au+Mu+bu) = f(z), x€Q, u=0 for x € 09,

where 2 is a bounded smooth domain in R”, and A is the principal eigenvalue of the
Laplacian —A on 2, with zero at the boundary condition (we shall denote by ¢ ()
the corresponding eigenfunction). Early contributions included the other classics,
A. Ambrosetti and G. Prodi [1] and M.S. Berger and E. Podolak [3], see a nice



presentation in the book of A. Ambrosetti and G. Prodi [2]. Recently, the present
author [6] has suggested a unified approach to these results. The function b(u) is
usually assumed to be bounded and continuous, and the famous E.M. Landesman
and A.C. Lazer [7] conditions required that it had limits at £oo. In an elegant
paper, D.G. de Figueiredo and W.-M. Ni [5] proved existence of solutions assuming
that ub(u) > 0 for all w € R, and the forcing term f(x) has zero first harmonic,
ie., [o f(z)¢1(x)dx = 0. Their proof involved establishment of an a priori estimate,
which was remarkable because such estimates usually require some conditions on b(u)
at infinity.

In this note we extend the result of D.G. de Figueiredo and W.-M. Ni [5] to a
system of two equations. The system

(1.2) Au+ v+ b1(v) = f(x), z€Q, u=0 for z € 0N
Av—l—/\;u—l—bg(u):g(:n), x €, v=0 for x € 99,

with any A > 0 can be seen as the case of resonance at the principal eigenvalue,
similarly to (1.1). Similarly to [5], we assume that tb;(t) > 0 for allt € R, i = 1,2.
We prove existence of solutions, provided that the first harmonics of f(z) and g(x)
lie on a certain straight line. There is a considerable interest in systems of this type,
see e.g., the recent surveys of D.G. de Figueiredo [4] and B. Ruf [9].

2 Existence of solutions
On a smooth domain 2 C R™, we consider a weakly coupled linear system

(2.1) Au+ v = f(z), € Q, u=0 for x € 9N
Av+du=g(x), 2€Q, v=0 forxz o,

with given functions f(x) and g(x), and parameters A and A. The following propo-
sition identifies the set of non-resonant parameters A and A\. We denote by \,, the
eigenvalues of —A on 2, which vanish at the boundary, and by ¢, (x) the correspond-
ing eigenfunctions.

Proposition 1 Assume that A\ # X2 for alln > 1. Then for any pair (f(z), g(z)) €
L%(Q) x L*(Q) there exists a unique solution (u(x),v(z)) € (W>%(Q) x W2’2(Q))2.

Proof:  Existence of solution in L%(Q) x L?(f2) follows by using the Fourier series
in ¢y (x), written for u,v,f, and g, and then the standard elliptic estimates provide
the extra regularity of solution. O



The resonance case is when A\ = A\2. We shall consider the principal resonance

— — 2
case A = A}, ie, A = % We shall prove solvability for the system

(2.2) Au+ v+ b1(v) = f(x), z€Q, u=0 for z € 0N

2
AL

Av 4 Fu+ba(u) = g(z), v €Q, v=0 forxz € 0Q,

with given functions f(z), g(z) € L*(Q), and a constant A > 0. The following is
a system analog of the result of D.G. de Figueiredo and W.-M. Ni [5]. We denote

o1 ={f € L*(Q) : Jq f1dw =0}

Theorem 2.1 Assume that bi(t) and by(t) are bounded and continuous functions,
such that
(2.3) thi(t) >0 forallte R, i=1,2.

Decompose f(x) = p1é1(x) + e1(x), g(z) = v1¢1(z) + ea(x), with eq(x), ea(x) € O7.
Then the system (2.2) is solvable for any (u1,v1) satisfying

(2.4) /\1,&1 + A1 =0
with u, v € Wol’z(ﬂ) NW2P(Q), for all p > 2.

The proof will be based on the following lemmas. The first one follows immedi-
ately by considering Fourier series in ¢, (x).

Lemma 2.1 The solution set of the linear system
(2.5) Au+lv=0, 2€Q, u=0 forxz e I
2
Av—l—%uzo, z€Q, v=0 forx e I

is (u,v) = c(¢1, %(ﬁl), where ¢ is an arbitrary constant. In particular, the only
solution of (2.5) in ¢ x é1 is (0,0).

Lemma 2.2 Let U, V € ¢1 be solutions of

(2.6) AU+ NV = f(z), 2€Q, u=0 forz e 0N
AV—I—AT%UZQ(:E), z€Q, v=0 forx e,

with f(x), g(x) € L®(Q). Then for any p > 1 one can find a constant ¢ > 0, such
that

(2.7) HUllwzr@) + IV Iwze) < el fllLe@) + ll9llLr@)) -

By the Sobolev imbedding this implies that ||U||pec(q) + ||[V]|Le@) < c1, for some
constant c1 > 0.



Proof: Standard elliptic estimates imply that

HUllw2e + [[VIIw2e < c(llfllze + llgllze + [[U]|zo + [[V]]Lr) -

The estimate (2.7) will follow, once we prove that
(2.8) NUlle + 1IVIIze < eIl fllLe +lgllLe) -

Assume for definiteness that || f||zr > ||g||zr- Dividing both equations in (2.7) by
the same constant ||f||rr, and redefining U and V, we may assume that ||f||z» = 1
and |g||r» < 1. Assuming that the estimate (2.8) is not possible with any constant
¢, we could find a sequence {f,,gn}, with ||fu|lzr = 1 and |gn||zr < 1, and the
corresponding solutions of (2.6) {U,,, V,,} € ¢i x ¢, so that

UnllLe + [[VallLr = n(1 + [|gnl[Lr) -

Un
Unllze + |[Val| e

In particular, ||Uy,||re + ||Va||zr — o0, as n — oo. Define u,, =

Vi
Unllze + [|Val| e

and v, = . They satisfy

I 1 C) N

(2.9) Aty + ANon = [ VilTor
A2 _ gn ()

Avn + FUn = onTe HIVaTor -

Since ||up||r < 1, [|vn|lzr < 1, we get uniform in n bounds for ||u,||y2» and
l[vn]lw2s- In a standard way, along a subsequence {u,,v,} — (u,v) € ¢ x o1,
with (u,v) solving (2.5). Hence u = v = 0 by Lemma 2.2, but ||u + v||zr = 1, a
contradiction. &

The following lemma provides the crucial a priori estimate. As mentioned in D.G.
de Figueiredo and W.-M. Ni, it is remarkable that this estimate does not require any
conditions on b;(¢) at infinity (which are usually needed to get a priori estimates).

Lemma 2.3 In the conditions of the Theorem 2.1, there is a constant ¢ > 0, so that
any solution of (2.2) satisfies

ull L2y + [0l L2) < ¢

Proof:  Decompose u(z) = &1¢1(z) + U(x), v(z) = mei(z) + V(z), with U(x),
V(z) € ¢1. The system (2.2) becomes

(2.10) AU + AV + (=X& + dm)dr + bi(mor(z) + V() = mor(z) + er(x),
AU + AT%U + AL (A& — A1) dr + ba(&161(2) + U(z)) = 11 (z) + ea(x) .
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We claim that
(2.11) | — A&+ Am| <c,
for some constant ¢ > 0. Indeed, multiply the first equation in (2.10) by ¢, and

integrate over €. Since [, AU¢ dx = [, V¢ dx = 0, while by is a bounded function,
the claim follows. By Lemma 2.2, it follows that

(2.12) Ullerg) + VIIere) < e,

for some constant ¢y > 0.

To complete the proof, we need an a priori estimate of the first harmonics & and
m. By (2.11), if either one of & and n; is large and positive (negative), so is the
other one. Assume for definiteness that & and n; are both negative, and large in
absolute value. Multiply the first equation in (2.10) by A1¢1, the second one by A¢q,
integrate over €2, and add the results. We may assume that [, $?dr = 1. By our
condition (2.4)

0=MXp + A = /Q A1b1 (g1 (x) + V(2)) + Ab2(&1¢1(x) + U(x))] ¢1(z) da .

We claim that the integral on the right is negative, which gives us a contradiction.
Indeed, by (2.12), m¢1(z) + V(z) < 0 and §1¢1(z) + U(x) < 0 over €2, and then, by
condition (2.3), the functions by and by are negative. O

Proof of the Theorem 2.1 Letting w = (u,v), we rewrite the system (2.2) in the
operator form
w="T(w),

where T(w) = (A7 (=Av —by(v) + p1¢1 +e1), A7 (—i\—%u —bay(u) + 161 + 62)).
T is a compact map L2(Q) x L?(Q) — L*(Q) x L*(Q). We define L? = L?(Q) x L*(Q),
with the norm ||w|[f. = ||u||%2(9) + ||v||%2(ﬂ). Following D.G. de Figueiredo and W.-
M. Ni [5], we consider the operator

1 k

=—T ——T (- <k<1
()~ g T(w), 0< k<1,

Tk(w)

which is compact for all k, Ty = T, and 17 is an odd operator. It is known, see e.g.,
L. Nirenberg [8], that the Leray-Schauder degree

deg(I — Ty, Bp, 0) £ 0
for any ball Bg = {w € L? : ||w||g2 < R}. We claim that there is an R such that

w—Tk(w) #0, for ||wljf2=R, 0<k<1.



Then by the homotopy invariance of the degree, deg(I — T, Bgr, 0) # 0, which implies
that the system (2.2) has a solution. To prove the claim, we need a uniform in k a
priori bound for

w—Ti(w) =0,

which is equivalent to

(2.13) Au+ M+ b (v) = gigbi(—v) = 155 (1 +e1)
A2 _
Av+ Fu+ gba(u) — Fgba(—u) = 175 (111 + e2) -
Clearly, the condition (2.4) on the first harmonics is satisfied for all k. Letting
bE(t) = ﬁbi(t) - %bi(—t), i = 1,2, we see that these functions are uniformly
bounded in k, and satisfy the condition (2.3). By Lemma 2.3, we conclude a uniform

in k a priori bound for solutions of (2.13), completing the proof. &
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