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Abstract

We consider a semilinear system

∆u + λv + b1(v) = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω

∆v +
λ

2

1

λ
u + b2(u) = g(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

whose linear part is at resonance. Here λ > 0, the functions b1(t) and b2(t)
are bounded and continuous. Assuming that tbi(t) > 0 for all t ∈ R, i = 1, 2,
and the first harmonics of f(x) and g(x) lie on a certain straight line, we prove
existence of solutions. This extends a similar result for one equation, due to
D.G. de Figueiredo and W.-M. Ni [5].
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1 Introduction

Following publication of the classical paper of E.M. Landesman and A.C. Lazer [7],
there has been an enormous interest in nonlinear perturbations of linear equations at

resonance of the type

∆u + λ1u + b(u) = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω ,(1.1)

where Ω is a bounded smooth domain in Rn, and λ1 is the principal eigenvalue of the
Laplacian −∆ on Ω, with zero at the boundary condition (we shall denote by φ1(x)

the corresponding eigenfunction). Early contributions included the other classics,
A. Ambrosetti and G. Prodi [1] and M.S. Berger and E. Podolak [3], see a nice
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presentation in the book of A. Ambrosetti and G. Prodi [2]. Recently, the present

author [6] has suggested a unified approach to these results. The function b(u) is
usually assumed to be bounded and continuous, and the famous E.M. Landesman

and A.C. Lazer [7] conditions required that it had limits at ±∞. In an elegant
paper, D.G. de Figueiredo and W.-M. Ni [5] proved existence of solutions assuming

that ub(u) > 0 for all u ∈ R, and the forcing term f(x) has zero first harmonic,
i.e.,

∫

Ω f(x)φ1(x) dx = 0. Their proof involved establishment of an a priori estimate,

which was remarkable because such estimates usually require some conditions on b(u)
at infinity.

In this note we extend the result of D.G. de Figueiredo and W.-M. Ni [5] to a

system of two equations. The system

∆u + λv + b1(v) = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(1.2)

∆v +
λ2

1

λ u + b2(u) = g(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

with any λ > 0 can be seen as the case of resonance at the principal eigenvalue,
similarly to (1.1). Similarly to [5], we assume that tbi(t) > 0 for all t ∈ R, i = 1, 2.

We prove existence of solutions, provided that the first harmonics of f(x) and g(x)
lie on a certain straight line. There is a considerable interest in systems of this type,

see e.g., the recent surveys of D.G. de Figueiredo [4] and B. Ruf [9].

2 Existence of solutions

On a smooth domain Ω ⊂ Rn, we consider a weakly coupled linear system

∆u + λv = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(2.1)

∆v + λ̄u = g(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

with given functions f(x) and g(x), and parameters λ and λ̄. The following propo-

sition identifies the set of non-resonant parameters λ and λ̄. We denote by λn the
eigenvalues of −∆ on Ω, which vanish at the boundary, and by φn(x) the correspond-

ing eigenfunctions.

Proposition 1 Assume that λλ̄ 6= λ2
n for all n ≥ 1. Then for any pair (f(x), g(x)) ∈

L2(Ω)× L2(Ω) there exists a unique solution (u(x), v(x)) ∈
(

W 2,2(Ω)× W 2,2(Ω)
)2

.

Proof: Existence of solution in L2(Ω)× L2(Ω) follows by using the Fourier series
in φn(x), written for u,v,f , and g, and then the standard elliptic estimates provide

the extra regularity of solution. ♦
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The resonance case is when λλ̄ = λ2
n. We shall consider the principal resonance

case λλ̄ = λ2
1, i.e., λ̄ =

λ2

1

λ
. We shall prove solvability for the system

∆u + λv + b1(v) = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(2.2)

∆v +
λ2

1

λ
u + b2(u) = g(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

with given functions f(x), g(x) ∈ L2(Ω), and a constant λ > 0. The following is
a system analog of the result of D.G. de Figueiredo and W.-M. Ni [5]. We denote

φ⊥
1 = {f ∈ L2(Ω) :

∫

Ω fφ1 dx = 0}.

Theorem 2.1 Assume that b1(t) and b2(t) are bounded and continuous functions,

such that
tbi(t) > 0 for all t ∈ R, i = 1, 2 .(2.3)

Decompose f(x) = µ1φ1(x) + e1(x), g(x) = ν1φ1(x) + e2(x), with e1(x), e2(x) ∈ φ⊥
1 .

Then the system (2.2) is solvable for any (µ1, ν1) satisfying

λ1µ1 + λν1 = 0(2.4)

with u, v ∈ W
1,2
0 (Ω) ∩ W 2,p(Ω), for all p > 2.

The proof will be based on the following lemmas. The first one follows immedi-
ately by considering Fourier series in φn(x).

Lemma 2.1 The solution set of the linear system

∆u + λv = 0, x ∈ Ω, u = 0 for x ∈ ∂Ω(2.5)

∆v +
λ2

1

λ u = 0, x ∈ Ω, v = 0 for x ∈ ∂Ω

is (u, v) = c(φ1,
λ1

λ
φ1), where c is an arbitrary constant. In particular, the only

solution of (2.5) in φ⊥
1 × φ⊥

1 is (0, 0).

Lemma 2.2 Let U , V ∈ φ⊥
1 be solutions of

∆U + λV = f(x), x ∈ Ω, u = 0 for x ∈ ∂Ω(2.6)

∆V +
λ2

1

λ
U = g(x), x ∈ Ω, v = 0 for x ∈ ∂Ω ,

with f(x), g(x) ∈ L∞(Ω). Then for any p > 1 one can find a constant c > 0, such
that

||U ||W 2,p(Ω) + ||V ||W 2,p(Ω) ≤ c(||f ||Lp(Ω) + ||g||Lp(Ω)) .(2.7)

By the Sobolev imbedding this implies that ||U ||L∞(Ω) + ||V ||L∞(Ω) ≤ c1, for some
constant c1 > 0.
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Proof: Standard elliptic estimates imply that

||U ||W 2,p + ||V ||W 2,p ≤ c(||f ||Lp + ||g||Lp + ||U ||Lp + ||V ||Lp) .

The estimate (2.7) will follow, once we prove that

||U ||Lp + ||V ||Lp ≤ c(||f ||Lp + ||g||Lp) .(2.8)

Assume for definiteness that ||f ||Lp ≥ ||g||Lp. Dividing both equations in (2.7) by
the same constant ||f ||Lp, and redefining U and V , we may assume that ||f ||Lp = 1
and |g||Lp ≤ 1. Assuming that the estimate (2.8) is not possible with any constant

c, we could find a sequence {fn, gn}, with ||fn||Lp = 1 and |gn||Lp ≤ 1, and the
corresponding solutions of (2.6) {Un, Vn} ∈ φ⊥

1 × φ⊥
1 , so that

||Un||Lp + ||Vn||Lp ≥ n(1 + ||gn||Lp) .

In particular, ||Un||Lp + ||Vn||Lp → ∞, as n → ∞. Define un =
Un

||Un||Lp + ||Vn||Lp

and vn =
Vn

||Un||Lp + ||Vn||Lp

. They satisfy

∆un + λvn =
fn(x)

||Un||Lp+||Vn||Lp
(2.9)

∆vn +
λ2

1

λ
un = gn(x)

||Un||Lp+||Vn||Lp
.

Since ||un||Lp < 1, ||vn||Lp < 1, we get uniform in n bounds for ||un||W 2,p and
||vn||W 2,p . In a standard way, along a subsequence {un, vn} → (u, v) ∈ φ⊥

1 × φ⊥
1 ,

with (u, v) solving (2.5). Hence u = v = 0 by Lemma 2.2, but ||u + v||Lp = 1, a
contradiction. ♦

The following lemma provides the crucial a priori estimate. As mentioned in D.G.

de Figueiredo and W.-M. Ni, it is remarkable that this estimate does not require any
conditions on bi(t) at infinity (which are usually needed to get a priori estimates).

Lemma 2.3 In the conditions of the Theorem 2.1, there is a constant c > 0, so that
any solution of (2.2) satisfies

||u||L2(Ω) + ||v||L2(Ω) ≤ c .

Proof: Decompose u(x) = ξ1φ1(x) + U(x), v(x) = η1φ1(x) + V (x), with U(x),
V (x) ∈ φ⊥

1 . The system (2.2) becomes

∆U + λV + (−λ1ξ1 + λη1)φ1 + b1(η1φ1(x) + V (x)) = µ1φ1(x) + e1(x),(2.10)

∆U +
λ2

1

λ
U + λ1

λ
(λ1ξ1 − λη1)φ1 + b2(ξ1φ1(x) + U(x)) = ν1φ1(x) + e2(x) .
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We claim that

| − λ1ξ1 + λη1| ≤ c ,(2.11)

for some constant c > 0. Indeed, multiply the first equation in (2.10) by φ1, and
integrate over Ω. Since

∫

Ω ∆Uφ1 dx =
∫

Ω V φ1 dx = 0, while b1 is a bounded function,

the claim follows. By Lemma 2.2, it follows that

||U ||C1(Ω) + ||V ||C1(Ω) ≤ c1 ,(2.12)

for some constant c1 > 0.

To complete the proof, we need an a priori estimate of the first harmonics ξ1 and
η1. By (2.11), if either one of ξ1 and η1 is large and positive (negative), so is the

other one. Assume for definiteness that ξ1 and η1 are both negative, and large in
absolute value. Multiply the first equation in (2.10) by λ1φ1, the second one by λφ1,

integrate over Ω, and add the results. We may assume that
∫

Ω φ2
1 dx = 1. By our

condition (2.4)

0 = λ1µ1 + λν1 =

∫

Ω
[λ1b1(η1φ1(x) + V (x)) + λb2(ξ1φ1(x) + U(x))]φ1(x) dx .

We claim that the integral on the right is negative, which gives us a contradiction.
Indeed, by (2.12), η1φ1(x) + V (x) < 0 and ξ1φ1(x) + U(x) < 0 over Ω, and then, by
condition (2.3), the functions b1 and b2 are negative. ♦

Proof of the Theorem 2.1 Letting w = (u, v), we rewrite the system (2.2) in the

operator form
w = T (w) ,

where T (w) = (∆−1 (−λv − b1(v) + µ1φ1 + e1) , ∆−1
(

−
λ2

1

λ
u − b2(u) + ν1φ1 + e2

)

).

T is a compact map L2(Ω)×L2(Ω) → L2(Ω)×L2(Ω). We define L2 = L2(Ω)×L2(Ω),

with the norm ||w||2
L2 = ||u||2

L2(Ω) + ||v||2
L2(Ω). Following D.G. de Figueiredo and W.-

M. Ni [5], we consider the operator

Tk(w) =
1

k + 1
T (w)−

k

k + 1
T (−w), 0 ≤ k ≤ 1 ,

which is compact for all k, T0 = T , and T1 is an odd operator. It is known, see e.g.,
L. Nirenberg [8], that the Leray-Schauder degree

deg(I − T1, BR, 0) 6= 0

for any ball BR = {w ∈ L2 : ||w||L2 ≤ R}. We claim that there is an R such that

w − Tk(w) 6= 0, for ||w||L2 = R, 0 ≤ k ≤ 1 .
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Then by the homotopy invariance of the degree, deg(I −T, BR, 0) 6= 0, which implies

that the system (2.2) has a solution. To prove the claim, we need a uniform in k a
priori bound for

w − Tk(w) = 0 ,

which is equivalent to

∆u + λv + 1
k+1b1(v)− k

k+1b1(−v) = 1−k
1+k

(µ1φ1 + e1)(2.13)

∆v +
λ2

1

λ
u + 1

k+1 b2(u)− k
k+1b2(−u) = 1−k

1+k
(ν1φ1 + e2) .

Clearly, the condition (2.4) on the first harmonics is satisfied for all k. Letting
bk
i (t) = 1

k+1bi(t) −
k

k+1 bi(−t), i = 1, 2, we see that these functions are uniformly

bounded in k, and satisfy the condition (2.3). By Lemma 2.3, we conclude a uniform
in k a priori bound for solutions of (2.13), completing the proof. ♦

Acknowledgment It is a pleasure to thank Wei-Ming Ni who explained [5] to me
at about the time of its publication in 1979. It did take me a while to absorb that

information.
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