Nonlinear perturbations of linear elliptic systems at resonance

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

We consider a semilinear system $$
\begin{aligned} \Delta u+\lambda v+b_{1}(v)=f(x), & x \in \Omega, \quad u=0 \text { for } x \in \partial \Omega \\ \Delta v+\frac{\lambda_{1}^{2}}{\lambda} u+b_{2}(u)=g(x), & x \in \Omega, \quad v=0 \text { for } x \in \partial \Omega, \end{aligned}
$$ whose linear part is at resonance. Here $\lambda>0$, the functions $b_{1}(t)$ and $b_{2}(t)$ are bounded and continuous. Assuming that $t b_{i}(t)>0$ for all $t \in R, i=1,2$, and the first harmonics of $f(x)$ and $g(x)$ lie on a certain straight line, we prove existence of solutions. This extends a similar result for one equation, due to D.G. de Figueiredo and W.-M. Ni [5].

Key words: Elliptic system at resonance, existence of solutions.
AMS subject classification: 35J60.

1 Introduction

Following publication of the classical paper of E.M. Landesman and A.C. Lazer [7], there has been an enormous interest in nonlinear perturbations of linear equations at resonance of the type

$$
\begin{equation*}
\Delta u+\lambda_{1} u+b(u)=f(x), \quad x \in \Omega, \quad u=0 \text { for } x \in \partial \Omega, \tag{1.1}
\end{equation*}
$$

where Ω is a bounded smooth domain in R^{n}, and λ_{1} is the principal eigenvalue of the Laplacian $-\Delta$ on Ω, with zero at the boundary condition (we shall denote by $\phi_{1}(x)$ the corresponding eigenfunction). Early contributions included the other classics, A. Ambrosetti and G. Prodi [1] and M.S. Berger and E. Podolak [3], see a nice
presentation in the book of A. Ambrosetti and G. Prodi [2]. Recently, the present author [6] has suggested a unified approach to these results. The function $b(u)$ is usually assumed to be bounded and continuous, and the famous E.M. Landesman and A.C. Lazer [7] conditions required that it had limits at $\pm \infty$. In an elegant paper, D.G. de Figueiredo and W.-M. Ni [5] proved existence of solutions assuming that $u b(u)>0$ for all $u \in R$, and the forcing term $f(x)$ has zero first harmonic, i.e., $\int_{\Omega} f(x) \phi_{1}(x) d x=0$. Their proof involved establishment of an a priori estimate, which was remarkable because such estimates usually require some conditions on $b(u)$ at infinity.

In this note we extend the result of D.G. de Figueiredo and W.-M. Ni [5] to a system of two equations. The system

$$
\begin{align*}
\Delta u+\lambda v+b_{1}(v)=f(x), & x \in \Omega, \quad u=0 \text { for } x \in \partial \Omega \tag{1.2}\\
\Delta v+\frac{\lambda_{1}^{2}}{\lambda} u+b_{2}(u)=g(x), & x \in \Omega, \quad v=0 \text { for } x \in \partial \Omega
\end{align*}
$$

with any $\lambda>0$ can be seen as the case of resonance at the principal eigenvalue, similarly to (1.1). Similarly to [5], we assume that $t b_{i}(t)>0$ for all $t \in R, i=1,2$. We prove existence of solutions, provided that the first harmonics of $f(x)$ and $g(x)$ lie on a certain straight line. There is a considerable interest in systems of this type, see e.g., the recent surveys of D.G. de Figueiredo [4] and B. Ruf [9].

2 Existence of solutions

On a smooth domain $\Omega \subset R^{n}$, we consider a weakly coupled linear system

$$
\begin{array}{ll}
\Delta u+\lambda v=f(x), & x \in \Omega, \quad u=0 \text { for } x \in \partial \Omega \tag{2.1}\\
\Delta v+\bar{\lambda} u=g(x), & x \in \Omega, \quad v=0 \text { for } x \in \partial \Omega,
\end{array}
$$

with given functions $f(x)$ and $g(x)$, and parameters λ and $\bar{\lambda}$. The following proposition identifies the set of non-resonant parameters λ and $\bar{\lambda}$. We denote by λ_{n} the eigenvalues of $-\Delta$ on Ω, which vanish at the boundary, and by $\phi_{n}(x)$ the corresponding eigenfunctions.

Proposition 1 Assume that $\lambda \bar{\lambda} \neq \lambda_{n}^{2}$ for all $n \geq 1$. Then for any pair $(f(x), g(x)) \in$ $L^{2}(\Omega) \times L^{2}(\Omega)$ there exists a unique solution $(u(x), v(x)) \in\left(W^{2,2}(\Omega) \times W^{2,2}(\Omega)\right)^{2}$.

Proof: Existence of solution in $L^{2}(\Omega) \times L^{2}(\Omega)$ follows by using the Fourier series in $\phi_{n}(x)$, written for u, v, f, and g, and then the standard elliptic estimates provide the extra regularity of solution.

The resonance case is when $\lambda \bar{\lambda}=\lambda_{n}^{2}$. We shall consider the principal resonance case $\lambda \bar{\lambda}=\lambda_{1}^{2}$, i.e., $\bar{\lambda}=\frac{\lambda_{1}^{2}}{\lambda}$. We shall prove solvability for the system

$$
\begin{array}{rll}
\Delta u+\lambda v+b_{1}(v)=f(x), & x \in \Omega, & u=0 \text { for } x \in \partial \Omega \tag{2.2}\\
\Delta v+\frac{\lambda_{1}^{2}}{\lambda} u+b_{2}(u)=g(x), & x \in \Omega, & v=0 \text { for } x \in \partial \Omega
\end{array}
$$

with given functions $f(x), g(x) \in L^{2}(\Omega)$, and a constant $\lambda>0$. The following is a system analog of the result of D.G. de Figueiredo and W.-M. Ni [5]. We denote $\phi_{1}^{\perp}=\left\{f \in L^{2}(\Omega): \int_{\Omega} f \phi_{1} d x=0\right\}$.

Theorem 2.1 Assume that $b_{1}(t)$ and $b_{2}(t)$ are bounded and continuous functions, such that

$$
\begin{equation*}
t b_{i}(t)>0 \quad \text { for all } t \in R, i=1,2 \tag{2.3}
\end{equation*}
$$

Decompose $f(x)=\mu_{1} \phi_{1}(x)+e_{1}(x), g(x)=\nu_{1} \phi_{1}(x)+e_{2}(x)$, with $e_{1}(x), e_{2}(x) \in \phi_{1}^{\perp}$. Then the system (2.2) is solvable for any $\left(\mu_{1}, \nu_{1}\right)$ satisfying

$$
\begin{equation*}
\lambda_{1} \mu_{1}+\lambda \nu_{1}=0 \tag{2.4}
\end{equation*}
$$

with $u, v \in W_{0}^{1,2}(\Omega) \cap W^{2, p}(\Omega)$, for all $p>2$.
The proof will be based on the following lemmas. The first one follows immediately by considering Fourier series in $\phi_{n}(x)$.

Lemma 2.1 The solution set of the linear system

$$
\begin{gather*}
\Delta u+\lambda v=0, \quad x \in \Omega, \quad u=0 \text { for } x \in \partial \Omega \tag{2.5}\\
\Delta v+\frac{\lambda_{1}^{2}}{\lambda} u=0, \quad x \in \Omega, \quad v=0 \text { for } x \in \partial \Omega
\end{gather*}
$$

is $(u, v)=c\left(\phi_{1}, \frac{\lambda_{1}}{\lambda} \phi_{1}\right)$, where c is an arbitrary constant. In particular, the only solution of (2.5) in $\phi_{1}^{\perp} \times \phi_{1}^{\perp}$ is $(0,0)$.

Lemma 2.2 Let $U, V \in \phi_{1}^{\perp}$ be solutions of

$$
\begin{array}{rll}
\Delta U+\lambda V=f(x), & x \in \Omega, & u=0 \text { for } x \in \partial \Omega \tag{2.6}\\
\Delta V+\frac{\lambda_{1}^{2}}{\lambda} U=g(x), & x \in \Omega, & v=0 \text { for } x \in \partial \Omega
\end{array}
$$

with $f(x), g(x) \in L^{\infty}(\Omega)$. Then for any $p>1$ one can find a constant $c>0$, such that

$$
\begin{equation*}
\|U\|_{W^{2, p}(\Omega)}+\|V\|_{W^{2, p}(\Omega)} \leq c\left(\|f\|_{L^{p}(\Omega)}+\|g\|_{L^{p}(\Omega)}\right) \tag{2.7}
\end{equation*}
$$

By the Sobolev imbedding this implies that $\|U\|_{L^{\infty}(\Omega)}+\|V\|_{L^{\infty}(\Omega)} \leq c_{1}$, for some constant $c_{1}>0$.

Proof: Standard elliptic estimates imply that

$$
\|U\|_{W^{2, p}}+\|V\|_{W^{2, p}} \leq c\left(\|f\|_{L^{p}}+\|g\|_{L^{p}}+\|U\|_{L^{p}}+\|V\|_{L^{p}}\right) .
$$

The estimate (2.7) will follow, once we prove that

$$
\begin{equation*}
\|U\|_{L^{p}}+\|V\|_{L^{p}} \leq c\left(\|f\|_{L^{p}}+\|g\|_{L^{p}}\right) . \tag{2.8}
\end{equation*}
$$

Assume for definiteness that $\|f\|_{L^{p}} \geq\|g\|_{L^{p}}$. Dividing both equations in (2.7) by the same constant $\|f\|_{L^{p}}$, and redefining U and V, we may assume that $\|f\|_{L^{p}}=1$ and $\mid g \|_{L^{p}} \leq 1$. Assuming that the estimate (2.8) is not possible with any constant c, we could find a sequence $\left\{f_{n}, g_{n}\right\}$, with $\left\|f_{n}\right\|_{L^{p}}=1$ and $\mid g_{n} \|_{L^{p}} \leq 1$, and the corresponding solutions of (2.6) $\left\{U_{n}, V_{n}\right\} \in \phi_{1}^{\perp} \times \phi_{1}^{\perp}$, so that

$$
\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}} \geq n\left(1+\left\|g_{n}\right\|_{L^{p}}\right) .
$$

In particular, $\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}} \rightarrow \infty$, as $n \rightarrow \infty$. Define $u_{n}=\frac{U_{n}}{\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}}}$ and $v_{n}=\frac{V_{n}}{\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}}}$. They satisfy

$$
\begin{align*}
\Delta u_{n}+\lambda v_{n} & =\frac{f_{n}(x)}{\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}}} \tag{2.9}\\
\Delta v_{n}+\frac{\lambda_{1}^{2}}{\lambda} u_{n} & =\frac{g_{n}(x)}{\left\|U_{n}\right\|_{L^{p}}+\left\|V_{n}\right\|_{L^{p}}} .
\end{align*}
$$

Since $\left\|u_{n}\right\|_{L^{p}}<1,\left\|v_{n}\right\|_{L^{p}}<1$, we get uniform in n bounds for $\left\|u_{n}\right\|_{W^{2, p}}$ and $\left\|v_{n}\right\|_{W^{2, p}}$. In a standard way, along a subsequence $\left\{u_{n}, v_{n}\right\} \rightarrow(u, v) \in \phi_{1}^{\perp} \times \phi_{1}^{\perp}$, with (u, v) solving (2.5). Hence $u=v=0$ by Lemma 2.2, but $\|u+v\|_{L^{p}}=1$, a contradiction.

The following lemma provides the crucial a priori estimate. As mentioned in D.G. de Figueiredo and W.-M. Ni, it is remarkable that this estimate does not require any conditions on $b_{i}(t)$ at infinity (which are usually needed to get a priori estimates).

Lemma 2.3 In the conditions of the Theorem 2.1, there is a constant $c>0$, so that any solution of (2.2) satisfies

$$
\|u\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)} \leq c .
$$

Proof: \quad Decompose $u(x)=\xi_{1} \phi_{1}(x)+U(x), v(x)=\eta_{1} \phi_{1}(x)+V(x)$, with $U(x)$, $V(x) \in \phi_{1}^{\perp}$. The system (2.2) becomes

$$
\begin{align*}
& \Delta U+\lambda V+\left(-\lambda_{1} \xi_{1}+\lambda \eta_{1}\right) \phi_{1}+b_{1}\left(\eta_{1} \phi_{1}(x)+V(x)\right)=\mu_{1} \phi_{1}(x)+e_{1}(x) \tag{2.10}\\
& \Delta U+\frac{\lambda_{1}^{2}}{\lambda} U+\frac{\lambda_{1}}{\lambda}\left(\lambda_{1} \xi_{1}-\lambda \eta_{1}\right) \phi_{1}+b_{2}\left(\xi_{1} \phi_{1}(x)+U(x)\right)=\nu_{1} \phi_{1}(x)+e_{2}(x) .
\end{align*}
$$

We claim that

$$
\begin{equation*}
\left|-\lambda_{1} \xi_{1}+\lambda \eta_{1}\right| \leq c, \tag{2.11}
\end{equation*}
$$

for some constant $c>0$. Indeed, multiply the first equation in (2.10) by ϕ_{1}, and integrate over Ω. Since $\int_{\Omega} \Delta U \phi_{1} d x=\int_{\Omega} V \phi_{1} d x=0$, while b_{1} is a bounded function, the claim follows. By Lemma 2.2, it follows that

$$
\begin{equation*}
\|U\|_{C^{1}(\Omega)}+\|V\|_{C^{1}(\Omega)} \leq c_{1}, \tag{2.12}
\end{equation*}
$$

for some constant $c_{1}>0$.
To complete the proof, we need an a priori estimate of the first harmonics ξ_{1} and η_{1}. By (2.11), if either one of ξ_{1} and η_{1} is large and positive (negative), so is the other one. Assume for definiteness that ξ_{1} and η_{1} are both negative, and large in absolute value. Multiply the first equation in (2.10) by $\lambda_{1} \phi_{1}$, the second one by $\lambda \phi_{1}$, integrate over Ω, and add the results. We may assume that $\int_{\Omega} \phi_{1}^{2} d x=1$. By our condition (2.4)

$$
0=\lambda_{1} \mu_{1}+\lambda \nu_{1}=\int_{\Omega}\left[\lambda_{1} b_{1}\left(\eta_{1} \phi_{1}(x)+V(x)\right)+\lambda b_{2}\left(\xi_{1} \phi_{1}(x)+U(x)\right)\right] \phi_{1}(x) d x
$$

We claim that the integral on the right is negative, which gives us a contradiction. Indeed, by (2.12), $\eta_{1} \phi_{1}(x)+V(x)<0$ and $\xi_{1} \phi_{1}(x)+U(x)<0$ over Ω, and then, by condition (2.3), the functions b_{1} and b_{2} are negative.

Proof of the Theorem 2.1 Letting $w=(u, v)$, we rewrite the system (2.2) in the operator form

$$
w=T(w),
$$

where $T(w)=\left(\Delta^{-1}\left(-\lambda v-b_{1}(v)+\mu_{1} \phi_{1}+e_{1}\right), \Delta^{-1}\left(-\frac{\lambda_{1}^{2}}{\lambda} u-b_{2}(u)+\nu_{1} \phi_{1}+e_{2}\right)\right)$. T is a compact map $L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow L^{2}(\Omega) \times L^{2}(\Omega)$. We define $\mathbf{L}^{2}=L^{2}(\Omega) \times L^{2}(\Omega)$, with the norm $\|w\|_{\mathbf{L}^{2}}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+\|v\|_{L^{2}(\Omega)}^{2}$. Following D.G. de Figueiredo and W.$\mathrm{M} . \mathrm{Ni}[5]$, we consider the operator

$$
T_{k}(w)=\frac{1}{k+1} T(w)-\frac{k}{k+1} T(-w), \quad 0 \leq k \leq 1
$$

which is compact for all $k, T_{0}=T$, and T_{1} is an odd operator. It is known, see e.g., L. Nirenberg [8], that the Leray-Schauder degree

$$
\operatorname{deg}\left(I-T_{1}, B_{R}, 0\right) \neq 0
$$

for any ball $B_{R}=\left\{w \in \mathbf{L}^{2}:\|w\|_{\mathbf{L}^{2}} \leq R\right\}$. We claim that there is an R such that

$$
w-T_{k}(w) \neq 0, \text { for }\|w\|_{\mathbf{L}^{2}}=R, \quad 0 \leq k \leq 1
$$

Then by the homotopy invariance of the degree, $\operatorname{deg}\left(I-T, B_{R}, 0\right) \neq 0$, which implies that the system (2.2) has a solution. To prove the claim, we need a uniform in k a priori bound for

$$
w-T_{k}(w)=0
$$

which is equivalent to

$$
\begin{align*}
& \Delta u+\lambda v+\frac{1}{k+1} b_{1}(v)-\frac{k}{k+1} b_{1}(-v)=\frac{1-k}{1+k}\left(\mu_{1} \phi_{1}+e_{1}\right) \tag{2.13}\\
& \Delta v+\frac{\lambda_{1}^{2}}{\lambda} u+\frac{1}{k+1} b_{2}(u)-\frac{k}{k+1} b_{2}(-u)=\frac{1-k}{1+k}\left(\nu_{1} \phi_{1}+e_{2}\right)
\end{align*}
$$

Clearly, the condition (2.4) on the first harmonics is satisfied for all k. Letting $b_{i}^{k}(t)=\frac{1}{k+1} b_{i}(t)-\frac{k}{k+1} b_{i}(-t), i=1,2$, we see that these functions are uniformly bounded in k, and satisfy the condition (2.3). By Lemma 2.3, we conclude a uniform in k a priori bound for solutions of (2.13), completing the proof.

Acknowledgment It is a pleasure to thank Wei-Ming Ni who explained [5] to me at about the time of its publication in 1979. It did take me a while to absorb that information.

References

[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (4), 231-246 (1972).
[2] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, 34. Cambridge University Press, Cambridge, (1993).
[3] M.S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24, 837-846 (1974/75).
[4] D.G. de Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 1-48 (2008).
[5] D.G. de Figueiredo and W.-M. Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Anal. 3 no. 5, 629-634 (1979).
[6] P. Korman, Curves of equiharmonic solutions, and ranges of nonlinear equations, Adv. Differential Equations 14, no. 9-10, 963-984 (2009).
[7] E.M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19, 609-623 (1970).
[8] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Lecture Notes, Amer. Math. Soc. (1974).
[9] B. Ruf, Superlinear elliptic equations and systems, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 277-370. (2008).

