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Abstract. We consider the semilinear Dirichlet problem

∆u+ kg(u) = µ1ϕ1 + . . .+ µnϕn + e(x) for x ∈ U, u = 0 on ∂U,

where ϕk is the k-th eigenfunction of the Laplacian on U and e(x) ⊥ ϕk,
k = 1, . . . , n. We write the solution in the form u(x) =

Pn
i=1 ξiϕi +

Uξ(x), with Uξ ⊥ ϕk, k = 1, . . . , n. Starting with k = 0, when the prob-
lem is linear, we continue the solution in k by keeping ξ = (ξ1, . . . , ξn)
fixed, but allowing µ = (µ1, . . . , µn) to vary. We then study the map
ξ → µ, which provides existence and multiplicity results for the above
problem.

1. Introduction

We study existence and multiplicity of solutions for a semilinear problem

∆u+ kg(u) = f(x) for x ∈ U, (1.1)
u = 0 on ∂U

on a smooth domain U ⊂ Rm. Here the functions f(x) ∈ L2(U) and g(u) ∈
C2(R) are given and k is a parameter. We shall approach this problem by
continuation in k.

When k = 0 the problem is linear. It has a unique solution, as one sees
by using Fourier series of the form u(x) =

∑∞
k=1 ukϕk, where ϕk is the k-th

eigenfunction of the Laplacian on U , and λk is the corresponding eigenvalue.
We now continue in k, looking for a solution pair (k, u), or u = u(x, k).
At a generic point (k, u) the implicit function theorem applies, allowing
the continuation in k. These are regular points, where the corresponding
linearized problem has only the trivial solution. So until a singular point
is encountered, we have a solution curve u = u(x, k). At a singular point
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practically anything imaginable might happen (as one can see even on two-
dimensional examples, dealing with the solution set of h(k, u) = 0, where
h is some function of k ∈ R and u ∈ R). At some critical points the
M.G. Crandall and P.H. Rabinowitz theorem [6] applies, giving us a curve of
solutions through a critical point. But even in this favorable situation there
is a possibility that a solution curve will “turn back” in k.

So what is the way forward in k, which can take us through any critical
point? If a solution u(x) is given by a Fourier series u(x) =

∑∞
k=1 ukϕk, we

call Un = (u1, u2, . . . , un) the n-signature of the solution, or just signature
for short. We write f(x) by its Fourier series, and rewrite the problem (1.1)
as

∆u+ kg(u) = µ1ϕ1 + . . .+ µnϕn + e(x) for x ∈ U, (1.2)
u = 0 on ∂U

with e(x) the projection of f(x) onto the orthogonal complement to ϕ1, . . . ,
ϕn. Let us now constrain ourselves to holding the signature Un fixed (when
continuing in k), and in return allow for µ1, . . . , µn to vary; i.e., we are
looking for (u, µ1, . . . , µn) as a function of k, with Un fixed. It turns out
that we can continue forward in k this way, so long as

kmax
u∈R

g′(u) < λn+1.

So suppose this condition holds, and we wish to solve the problem (1.1)
at some k = k0. We travel in k from k = 0 to k = k0 on a curve of fixed
signature Un = (u1, u2, . . . , un), obtaining a solution of (1.2). The right-
hand side of (1.2) has the first n harmonics different from the ones we want
in (1.1). We now vary Un. The question is: can we choose Un to obtain
the desired µ1, . . . , µn, and if so, in how many ways? This corresponds to
the existence and multiplicity questions for the original problem (1.1). The
classical results of E.M. Landesman and A.C. Lazer [12], A. Ambrosetti and
G. Prodi [2], M. S. Berger and E. Podolak [4], as well as well-known papers
of H. Amann and P. Hess [1] and D.G. de Figueiredo and W.-M. Ni [8]
dealt with these questions when n = 1. We are able to obtain extensions
of some of these results, and largely recover the others. We show that all
solutions of the problem (1.2) (when n = 1) lie on a unique solution curve
µ1 = µ1(ξ1), and this curve determines multiplicity of solutions. Thus, a two-
dimensional curve gives a faithful representation of the solution set of (1.2).
All solutions of the problem (1.2) can be numerically computed through two
continuations: first in k, and then in ξ1, and both of these continuations do
not encounter turns or any other singularities.
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We also study the ranges in the n > 1 case. We obtain some existence
results, covering the case of resonance at higher eigenvalues. The advantage
of our approach is that we have concrete solution curves in hand, when
discussing ranges of nonlinear equations. Our approach can be seen as a
dynamical version of the classical Liapunov-Schmidt procedure. We do not
seek to solve the equation off the kernel in one step by applying an implicit
function theorem, but instead perform continuation. The inverse (or control)
problem that we had solved in the process: given Un find µ1, . . . , µn (with
e(x) fixed), appears to be of independent interest. We apply our results
to the question of symmetry breaking, considered in a recent paper by F.
Pacella and P. N. Srikanth [14]. We extend that result, obtaining multiple
symmetry breaking solutions.

Our approach is competitive for numerical computations. It is easy to
implement continuation in parameters, if one is guaranteed that solutions do
not turn back when parameters are varied. We performed such computations
in our previous paper [11].

2. Preliminary results

Recall that on a smooth domain U ⊂ Rm the eigenvalue problem

∆u+ λu = 0 on U, u = 0 on ∂U

has an infinite sequence of eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . .→∞, where
we repeat each eigenvalue according to its multiplicity, and the corresponding
eigenfunctions we denote ϕk. These eigenfunctions ϕk form an orthogonal
basis of L2(U); i.e., any f(x) ∈ L2(U) can be written as f(x) =

∑∞
k=1 akϕk,

with the series convergent in L2(U), see e.g. L. Evans [7]. We may normalize
||ϕk||L2(U) = 1 for all k.

Lemma 2.1. Assume that u(x) ∈ L2(U), and u(x) =
∑∞

k=n+1 akϕk. Then∫
U
|∇u|2 dx ≥ λn+1

∫
U
u2 dx.

Proof. Since u(x) is orthogonal to ϕ1, . . . , ϕn, the proof follows by the
variational characterization of λn+1. �

Any f(x) ∈ L2(U) can be decomposed as f(x) = µ1ϕ1 + . . .+µnϕn+e(x),
with e(x) =

∑∞
k=n+1 µkϕk orthogonal to ϕ1, . . . , ϕn. We call the vector µ =

(µ1, . . . , µn) the n−signature of f(x), or signature, for short. We consider a
boundary-value problem

∆u+ kg(u) = µ1ϕ1 + . . .+ µnϕn + e(x) for x ∈ U, (2.1)
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u = 0 on ∂U.

Here k > 0 is a constant, and g(u) ∈ C2(R) is assumed to satisfy

|g′(u)| ≤M for all u ∈ R, M > 0 a constant. (2.2)

We shall also assume that

g(u) =
{
γ1u+ b1(u) if u ≤ 0
γ2u+ b2(u) if u > 0, (2.3)

with real constants γ1, γ2, and b1(u), b2(u) bounded for all u ∈ R. Notice
that we admit the case of γ2 = γ1, and in particular we allow bounded g(u),
if γ2 = γ1 = 0.

If u(x) ∈ H2(U) ∩H1
0 (U) is a solution of (2.1), we decompose it as

u(x) =
n∑
i=1

ξiϕi + Uξ(x), (2.4)

where Uξ(x) is orthogonal in L2(U) to ϕ1, . . . , ϕn. The following lemma
gives an estimate of Uξ(x), uniformly in ξ1 and µ = (µ1, . . . , µn).

Lemma 2.2. Assume g(u) satisfies the conditions (2.2) and (2.3), and

kM < λn+1. (2.5)

Assume that a solution of (2.1) is written in the form (2.4). Assume that the
point (ξ2, . . . , ξn) belongs to a compact set in Rn−1. Then there is a constant
c > 0, so that∫

U
|∇Uξ|2 dx ≤ c, uniformly in ξ1 ∈ R, and µ ∈ Rn. (2.6)

Proof. Using the anzatz (2.4) in (2.1) we have

∆Uξ + kg(
n∑
i=1

ξiϕi + Uξ) =
n∑
i=1

(µi + λiξi)ϕi + e(x) for x ∈ U, (2.7)

Uξ = 0 on ∂U.

We multiply (2.7) by Uξ, and integrate∫
U
|∇Uξ|2 dx− k

∫
U
g(

n∑
i=1

ξiϕi + Uξ)Uξ dx = −
∫
U
e(x)Uξ dx. (2.8)

Since ϕ1 > 0, we can find N > 0, so that
∑n

i=1 ξiϕi > 0 for ξ1 > N , and∑n
i=1 ξiϕi < 0 for ξ1 < −N . Assume that ξ1 > N (the case ξ1 < −N
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is similar, and the case ξ1 ∈ [−N,N ] is easier, since then g(
∑n

i=1 ξiϕi) is
bounded). We write the second term on the left in (2.8) as

− k
∫
U

[
g(

n∑
i=1

ξiϕi + Uξ)− g(
n∑
i=1

ξiϕi)
]
Uξ dx (2.9)

− k
∫
U
γ2

( n∑
i=1

ξiϕi

)
Uξ dx− k

∫
U
b2

( n∑
i=1

ξiϕi

)
Uξ dx.

(With its argument positive, g(
∑n

i=1 ξiϕi) = γ2
∑n

i=1 ξiϕi + b2(
∑n

i=1 ξiϕi).)
The second integral in (2.9) vanishes. Using the condition (2.2), we estimate
the first integral in (2.9) from below by

−kM
∫
U
U2
ξ dx.

Using Lemma 2.1, we then conclude from (2.8) that

(λn+1 − kM)
∫
U
U2
ξ dx ≤

∫
U
|∇Uξ|2 dx− kM

∫
U
U2
ξ dx (2.10)

≤ −
∫
U
e(x)Uξ dx+ k

∫
U
b2(u)Uξ dx.

This gives us an estimate of
∫
U U

2
ξ dx. Returning to (2.10), we conclude the

lemma. �

Remarks. 1) Assume for ξ ∈ V ⊂ Rn we have
∑n

i=1 ξiϕi > 0 for all x ∈ U .
Then the estimate (2.6) is uniform with respect to ξ ∈ V and µ ∈ Rn. (The
conclusion is the same if

∑n
i=1 ξiϕi < 0 for all ξ ∈ V and x ∈ U .)

2) If γ1 = γ2 = γ in (2.3), i.e., when g(u) = γu+ b(u), with b(u) bounded
on R, the estimate (2.6) is uniform with respect to ξ ∈ Rn and µ ∈ Rn.

In the following linear problem the function a(x) is given, while µ1, . . . , µn
and w(x) are unknown.

Lemma 2.3. Consider the problem

∆w + a(x)w = µ1ϕ1 + . . .+ µnϕn for x ∈ U, (2.11)
w = 0 on ∂U,∫
U
wϕ1 dx = . . . =

∫
U
wϕn dx = 0.

Assume that
a(x) < λn+1 for all x ∈ U. (2.12)

Then the only solution of (2.11) is µ1 = . . . = µn = 0 and w(x) ≡ 0.
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Proof. Multiply the equation in (2.11) by w(x), a solution of the problem
(2.11), and integrate. Using Lemma 2.1 and the assumption (2.12), we have

λn+1

∫
U
w2 dx ≤

∫
U
|∇w|2 dx =

∫
U
a(x)w2 dx < λn+1

∫
U
w2 dx.

It follows that w(x) ≡ 0, and thus

0 = µ1ϕ1 + . . .+ µnϕn for x ∈ U,
which implies that µ1 = . . . = µn = 0. �

Corollary 1. If one considers the problem (2.11) with µ1 = . . . = µn = 0,
then w(x) ≡ 0 is the only solution of that problem.

3. A direct approach to an inverse problem

For the problem (2.1) let us pose an inverse problem: keeping e(x) fixed,
find µ = (µ1, . . . , µn) so that the problem (2.1) has a solution of any pre-
scribed n- signature ξ = (ξ1, . . . , ξn).

Theorem 3.1. For the problem (2.1) assume that conditions (2.2), (2.3),
and (2.5) hold. Then, given any ξ = (ξ1, . . . , ξn), one can find a unique
µ = (µ1, . . . , µn) for which the problem (2.1) has a solution of n- signature
ξ. This solution is unique.

Proof. When k = 0, the unique solution of (2.1) can be found in the form
u =

∑∞
k=1 ξkϕk. Choosing µi = −λiξi, i = 1, . . . , n, will provide us with a

unique solution of the linear problem (2.1) (here k = 0) of signature ξ. We
now show that solutions of fixed signature ξ can be continued in k.

We begin by assuming that ξ = 0 = (0, . . . , 0). Define H2
0 to be the

subspace of H2(U) ∩H1
0 (U) with zero n-signature:

H2
0 =

{
u ∈ H2(U) ∩H1

0 (U) :
∫
U
uϕi dx = 0, i = 1, . . . , n

}
.

We recast the problem (2.1) in the operator form as

F (u, µ, k) ≡ ∆u+ kg(u)− µ1ϕ1 − . . .− µnϕn = e(x),

where F (u, µ, k) : H2
0 × Rn × R → L2(U). We will show that the implicit

function theorem applies, allowing us to continue (u, µ) as a function of k.
Compute the Frechet derivative

F(u,µ)(u, µ, k)(w, µ∗) = ∆w + kg′(u)w − µ∗1ϕ1 − . . .− µ∗nϕn.
We need to show that the map F(u,µ)(u, µ, k)(w, µ∗) is both injective and
surjective. Observe that F(u,µ)(u, µ, k)(w, µ∗) : H2

0 ×Rn → L2(U).



Curves of equiharmonic solutions and ranges of nonlinear equations 969

The equation F(u,µ)(u, µ, k)(w, µ∗) = 0 is equivalent to

∆w + kg′(u)w = µ∗1ϕ1 + . . .+ µ∗nϕn for x ∈ U,
w = 0 on ∂U,∫
U
wϕ1 dx = . . . =

∫
U
wϕn dx = 0.

By Lemma 2.3, w(x) ≡ 0, and µ∗1 = . . . = µ∗n = 0, proving the injectivity.
To show that the linearized map is also surjective, we need to prove that

for any e∗(x) ∈ L2(U) the problem

∆w + kg′(u)w − µ∗1ϕ1 − . . .− µ∗nϕn = e∗(x) for x ∈ U, (3.1)
w = 0 on ∂U,∫
U
wϕ1 dx = . . . =

∫
U
wϕn dx = 0

has a solution (w, µ∗1, . . . , µ
∗
n). Consider the operator L : H2(U)∩H1

0 (U)→
L2(U) defined by L[w] ≡ ∆w + kg′(u)w (i.e. w = 0 on ∂U). We distinguish
between two cases.

Case 1. The operator L is invertible. Then we can write the solution of
the equation in (3.1), subject to the boundary condition in the second line
of (3.1) as

w(x) = µ∗1L
−1(ϕ1(x)) + . . .+ µ∗nL

−1(ϕn(x)) + L−1(e∗(x)).

We need to choose µ∗1, . . . , µ
∗
n so that the n conditions in the third line of

(3.1) are satisfied; i.e., we have (denoting by (·, ·) the inner product in L2(U))

µ∗1
(
L−1(ϕ1(x)), ϕ1

)
+ . . .+ µ∗n

(
L−1(ϕn(x)), ϕ1

)
= −

(
L−1(e∗(x)), ϕ1

)
. . . . . .

µ∗1
(
L−1(ϕ1(x)), ϕn

)
+ . . .+ µ∗n

(
L−1(ϕn(x)), ϕn

)
= −

(
L−1(e∗(x)), ϕn

)
.

This is a linear system with unknowns µ∗1, . . . , µ
∗
n. If this system was not

solvable, its columns would have to be linearly dependent; i.e., we could find
constants c1, . . . , cn, not all zero, so that(

L−1 (c1ϕ1(x) + . . .+ cnϕn(x)) , ϕi(x)
)

= 0, i = 1, . . . , n.

By Lemma 2.3 it follows that L−1 (c1ϕ1(x) + . . .+ cnϕn(x)) = 0, but then
0 = c1ϕ1(x) + . . . + cnϕn(x), contradicting the linear independence of the
ϕi’s.
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Case 2. The operator L is not invertible. Since L is a Fredholm operator of
index zero , it has a non-trivial kernel. Assume first that the kernel is one di-
mensional, spanned by some non-zero function w̄(x). In that case L−1 (f(x))
exists if and only if f(x) is orthogonal to the kernel; i.e., (f(x), w̄(x)) = 0.

By Corollary 1 to Lemma 2.3 w̄(x) cannot be orthogonal to all of the first
n eigenfunctions. Assume for definiteness that (w̄(x), ϕ1(x)) 6= 0. We can
then choose the constants γ1, . . . , γn−1 such that

(γ1ϕ1(x) + ϕ2(x) , w̄(x)) = 0 (3.2)
. . . . . .

(γn−1ϕ1(x) + ϕn(x) , w̄(x)) = 0.

We also choose γn such that

(γnϕ1(x) + e∗(x), w̄(x)) = 0. (3.3)

We rewrite the equation in (3.1) as

∆w + kg′(u)w = t1 (γ1ϕ1(x) + ϕ2(x)) + . . . (3.4)

+ tn−1 (γn−1ϕ1(x) + ϕn(x)) + γnϕ1(x) + e∗(x).

We shall choose the constants t1, . . . , tn−1 to obtain a solution of the prob-
lem (3.1). Choosing ti’s is of course equivalent to choosing µ∗1, . . . , µ

∗
n in

(3.1). In view of (3.2) and (3.3) the following functions are well defined:
w1 ≡ L−1 (γ1ϕ1(x) + ϕ2(x)), ..., wn−1 ≡ L−1 (γn−1ϕ1(x) + ϕn(x)), and
f ≡ L−1 (γnϕ1(x) + e∗(x)). In terms of these functions we write the so-
lution of (3.4) subject to the boundary condition (the second line in (3.1))
as

w = t1w1 + . . . tn−1wn−1 + f + sw̄,

where s is an arbitrary constant. We now choose the constants t1, . . . , tn−1,
s to satisfy n orthogonality conditions in the third line of (3.1). For that we
need to solve the linear system

t1 (w1, ϕ1) + . . .+ tn−1 (wn−1, ϕ1) + s (w̄, ϕ1) = − (f, ϕ1)
. . . . . .

t1 (w1, ϕn) + . . .+ tn−1 (wn−1, ϕn) + s (w̄, ϕn) = − (f, ϕn) .

This system is uniquely solvable, unless columns of its matrix are linearly
dependent. In that case one can find constants c1, . . . , cn, not all zero, so
that W ≡ c1w1 + . . .+ cn−1wn−1 + cnw̄ is orthogonal to ϕ1, . . . , ϕn. But

W = L−1 [c1 (γ1ϕ1(x) + ϕ2(x)) + . . .+ cn−1 (γn−1ϕ1(x) + ϕn(x))] .
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We see that L[W ] is a linear combination of ϕ1, . . . , ϕn:

L[W ] = (c1γ1 + . . .+ cn−1γn−1)ϕ1 + c1ϕ2 + . . . cn−1ϕn .

It follows that W satisfies all three lines in (2.11). By Lemma 2.3, W = 0,
and L[W ] = 0. The second of these conclusions implies that c1 = . . . =
cn−1 = 0. Since W = 0, either cn = 0 or w̄ ≡ 0, and both cases are
impossible.

Let us now consider the general case, when the null space of L is mul-
tidimensional, spanned by w̄1, . . . , w̄k. We have k ≤ n, in view of the
condition (2.5). (Zero is an eigenvalue of L[w] = λw. By (2.5) it is ei-
ther the n-th eigenvalue, or lower. Since we repeat each eigenvalue accord-
ing to its multiplicity, the multiplicity of λ = 0 is ≤ n.) Assume first
that k < n. Let ŵ1, . . . , ŵk be projections of respectively w̄1, . . . , w̄k onto
Xn ≡ span {ϕ1, . . . , ϕn}. By Corollary 1 to Lemma 2.3 the w̄i’s are all
non-zero. We can find mutually orthogonal functions ψ1, . . . , ψn−k ∈ Xn,
which are orthogonal to ŵ1, . . . , ŵk, and hence they are also orthogonal to
w̄1, . . . , w̄k. Without loss of generality we may assume that e∗ ∈ X⊥n (other-
wise one can absorb into µ∗i the projection of e∗ onto ϕi). Write the equation
in (3.1) as

L[w] = t1ψ1 + . . .+ tn−kψn−k + e∗. (3.5)
We shall choose the constants t1, . . . , tn−k to obtain a solution of (3.1) (choos-
ing ti’s is equivalent to choosing µ∗i ’s). The solution of (3.5) is

w = t1w1 + . . .+ tn−kwn−k + f + s1w̄1 + . . .+ skw̄k,

where we denote wi = L−1[ψi] and f = L−1[e∗]. We need to choose n
constants t1, . . . , tn−k and s1, . . . , sk so that w ⊥ Xn; i.e., we need to solve
the linear system
t1 (w1, ϕ1) + . . .+ tn−k (wn−k, ϕ1) + s1 (w̄1, ϕ1) + . . .+ sk (w̄k, ϕ1) = − (f, ϕ1)
. . . . . .

t1 (w1, ϕn) + . . .+ tn−k (wn−k, ϕn) + s1 (w̄1, ϕn) + . . .+ sk (w̄k, ϕn) = − (f, ϕn) .

The system is uniquely solvable, unless its columns are linearly dependent.
If that was the case, we could find constants c1, . . . , cn−k, d1, . . . , dk, not all
zero, so that

W ≡ c1w1 + . . .+ cn−kwn−k + d1w̄1 + . . .+ dkw̄k ⊥ Xn.

Observe that
L[W ] = c1ψ1 + . . .+ cn−kψn−k ∈ Xn. (3.6)

Applying Lemma 2.3 to the problem (3.6) we conclude that W = 0 and

0 = c1ψ1 + . . .+ cn−kψn−k.
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Since the ψi’s are mutually orthogonal, we conclude that ci’s are all zero.
Combining that with the fact that W = 0, we see that

d1w̄1 + . . .+ dkw̄k = 0,

and hence all di’s are also zero, a contradiction.
If k = n we proceed similarly. In the linear system above, there are no

ti’s, while we have s1, . . . , sn. Linear independence of columns would imply
existence of constants d1, . . . , dn, not all zero, so that for W ≡ d1w̄1 + . . .+
dnw̄n we have L[W ] = 0, and W ⊥ Xn. By Corollary 1 to Lemma 2.3, we
have W = 0, contradicting linear independence of the w̄i’s.

We now consider the case of general ξ, and reduce it to the case ξ = 0, by
setting v(x) = u(x)−

∑n
i=1 ξiϕi. Then v(x) satisfies

∆v + kg(v +
n∑
i=1

ξiϕi) =
n∑
i=1

(µi + λiξi)ϕi + e(x) for x ∈ U, (3.7)

u = 0 on ∂U.

Even though this problem is slightly different from (2.1), it is clear that we
can repeat the above argument, and obtain a curve of solutions of (3.7) of
zero signature. Then u = u(x, k) ≡ u(k) is a solution curve of fixed signature
ξ for the problem (2.1).

Hence, the implicit function theorem applies at any solution of (2.1); i.e.,
locally we have a curve of solutions u = u(k), µi = µi(k), i = 1, . . . , n.
To show that this curve can be continued for all k, satisfying our condition
(2.5), we only need to show that this curve (u(k), µ(k)) cannot go to infinity
at some k; i.e., we need an a priori estimate. Since the n-signature of the
solution is fixed, we only need to estimate Uξ. We claim that there is a
constant c > 0, so that

||Uξ||H2(U) ≤ c, uniformly in µ ∈ Rn. (3.8)

Indeed, multiply (2.7) by ∆Uξ and integrate. Since ∆Uξ ⊥ Xn, we have∫
U

(∆Uξ)2 dx+ k

∫
U

[
g(

n∑
i=1

ξiϕi + Uξ)− g(0)
]
∆Uξ dx (3.9)

=
∫
U

(e(x)− kg(0)) ∆Uξ dx.

The second term we integrate by parts, obtaining

−
∫
U
g′(

n∑
i=1

ξiϕi + Uξ)
( n∑
i=1

ξi∇ϕi +∇Uξ
)
· ∇Uξ dx.
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(There is no boundary term, since the quantity in the square bracket vanishes
on ∂U .) Since g′(u) is uniformly bounded, we get by Lemma 2.2 a bound for
this integral. Returning to (3.9), we have a bound on

∫
U (∆Uξ)2 dx, and by

elliptic regularity we conclude (3.8). (The estimate (3.8) is not uniform in ξ,
but we keep the signature ξ fixed.) Multiplying (2.1) by ϕi and integrating
over U , we conclude the existence of a uniform bound on µi(k). It follows
that we can continue the solutions of the problem (2.1), of fixed signature
ξ, for all k satisfying the condition (2.5). At each k we have a solution
(u(k), µ(k)) of (2.1).

Finally, if the problem (2.1) had a different solution (ū(k), µ̄(k)) with
the same signature ξ, we would continue it back in k, obtaining at k = 0 a
different (since solution curves do not intersect) solution of the linear problem
of signature ξ, which is impossible. �

4. Continuation in ξ for k fixed

Theorem 3.1 implies that the value of ξ = (ξ1, . . . , ξn) uniquely identifies
the solution pair (µ, u(x)), where µ = (µ1, . . . , µn). Hence the solution set
of (2.1) can be faithfully described by the map ξ ∈ Rn → µ ∈ Rn, which
we call the solution manifold. (If n = 1 we have a solution curve µ = µ(ξ),
which faithfully depicts the solution set.) We show next that the solution
manifold is connected.

Theorem 4.1. In the conditions of Theorem 3.1 any solution of n- signature
ξ can be locally continued in ξ. This continuation can in fact be performed
globally. In particular, we can continue solutions of any signature ξ̄ to a
solution of arbitrary signature ξ̂ by following any continuous curve joining ξ̄
and ξ̂.

Proof. We show that any solution of (2.1) can be continued in ξ, by using
the implicit function theorem. The proof is essentially the same as for con-
tinuation in k above. Letting u(x) =

∑n
i=1 ξiϕi+v(x), we recast the problem

(2.1) in the operator form F (v, µ, ξ) = e(x), where F : H2
0 ×Rn×Rn → L2

is defined by

F (v, µ, ξ) = ∆v+ kg(
n∑
i=1

ξiϕi + v(x))− (µ1 +λ1ξ1)ϕ1− . . .− (µn +λnξn)ϕn.

(Observe that the first n harmonics of v are zero.) The Frechet derivative
this time is

F(v,µ)(v, µ, ξ)(w, µ
∗) = ∆w + kg′(

n∑
i=1

ξiϕi + v(x))w − µ∗1ϕ1 − . . .− µ∗nϕn,
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with w ∈ H2
0, and µ∗ ∈ Rn. According to Lemma 2.3 the only solution of

the linearized problem

F(v,µ)(v, µ, ξ)(w, µ
∗) = 0 for x ∈ U,

w = 0 on ∂U,

w ∈ H2
0

is (w, µ∗) = (0,0). As before, we verify the surjectivity of the map
F(v,µ)(v, µ, ξ)(w, µ∗). Hence, the implicit function theorem applies, giving us
locally a curve of solutions u = u(x, ξ) and µ = µ(ξ). As before, we see that
solutions on this curve remain bounded, and hence we can continue the curve
for all ξ ∈ Rn. (The bound (3.8) depended on ξ. However, once we fix two
points ξ̄ and ξ̂, and the path joining them, the bound (3.8) is uniform.) �

5. Solution manifold in the case n = 1

The results of this section are largely known. However, we derive them in
a unified fashion, and we provide more detailed information on the solution
curves, which opens a way for numerical computations. Moreover, we obtain
extensions of most of these results.

We begin the study of the solution manifold in the case n = 1, i.e., when
only the first harmonic (of both the forcing term and of the solution) is
considered separately. The solution manifold in this case is a curve, and
we study its properties in this section. We can treat asymptotically linear
problems of the form (here λ is a parameter)

∆u+ λu+ b(u) = µ1ϕ1 + e(x) for x ∈ U, (5.1)
u = 0 on ∂U,

where e(x) is orthogonal to ϕ1, and b(u) ∈ C1(R) is a bounded function,
satisfying

λ+ b′(u) < λ2 for all u ∈ R. (5.2)

This condition is assumed throughout the present section. By Theorem
3.1, for any ξ1 ∈ R one can find a unique solution pair µ1 = µ1(ξ1) and u =
u(x, ξ1) = ξ1ϕ1 +Uξ1 (k is now fixed). When one varies ξ1, all these solutions
link up to form a unique solution curve, which exhausts the solution set of
(5.1). Indeed, by Theorem 4.1 we can continue solutions for −∞ < ξ1 <∞,
giving us a solution curve, and no solutions off this curve are possible, since
the value of ξ1 uniquely identifies the solution, and all values of ξ1 have been
accounted for.
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We now study the range of the function µ1 = µ1(ξ1). If this range is
(−∞,∞), it follows that the problem (5.1) is solvable for all right-hand
sides f(x) ≡ µ1ϕ1 + e(x) ∈ L2.

Proposition 1. Assume that λ 6= λ1. Then the range of the function µ1 =
µ1(ξ1) is (−∞,∞).

Proof. Multiplying (5.1) by ϕ1, and integrating gives

(λ− λ1)ξ1 +
∫
U
b(u)ϕ1 dx = µ1. (5.3)

Since b(u) is bounded, it follows that µ1 goes to infinity when ξ1 does. �

Observe that, if λ > λ1, µ1 goes to infinity in the same direction as ξ1,
while for λ < λ1 the direction is opposite. Clearly, something must happen
at λ = λ1 to allow this drastic change. It turns out that µ1 is bounded at
λ = λ1. The following observation follows from (5.3).

Proposition 2. If λ = λ1, then a solution of (5.1) may exist only if

inf
R
b(u)

∫
U
ϕ1 dx ≤ µ1 ≤ sup

R
b(u)

∫
U
ϕ1 dx.

We can get a more detailed result if we assume that b(u) has limits at infin-
ity b(−∞) and b(∞). This sort of result has originated from the celebrated
paper of E.M. Landesman and A.C. Lazer [12].

Theorem 5.1. If the limits b(±∞) exist, then

lim
ξ1→∞

µ1(ξ1) = b(∞)
∫
U
ϕ1 dx, and

lim
ξ1→−∞

µ1(ξ1) = b(−∞)
∫
U
ϕ1 dx.

The problem (5.1) is solvable, provided

min (b(−∞), b(∞))
∫
U
ϕ1 dx < µ1 < max (b(−∞), b(∞))

∫
U
ϕ1 dx. (5.4)

Proof. We prove that the limits exist. Then (5.4) will follow, since the
curve µ1 = µ1(ξ1) is continuous. Assume that ξ1 → ∞. Recall that we
decompose u = ξ1ϕ1 + Uξ. From (5.3) (at λ = λ1) for any δ > 0 and small

|µ1 − b(∞)
∫
U
ϕ1 dx| ≤

∫
U
|b(ξ1ϕ1 + Uξ)ϕ1 − b(∞)ϕ1| dx = (5.5)∫

ϕ1≤δ
|b(ξ1ϕ1 + Uξ)ϕ1 − b(∞)ϕ1| dx+

∫
ϕ1≥δ

|b(ξ1ϕ1 + Uξ)ϕ1 − b(∞)ϕ1| dx.
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Since b(u) is bounded, the first integral on the right can be made less than
ε/3 by choosing δ small. The second integral we decompose over two com-
plementary sets, keeping the same integrand (which we do not show)∫

|Uξ|<
ξ1ϕ1

2

+
∫
|Uξ|>

ξ1ϕ1
2

. (5.6)

In the second integral in (5.6) we integrate over the set where |Uξ| > ξ1δ
2 .

Since Uξ is bounded in L2 uniformly in ξ1 by Lemma 2.2, the measure of this
set tends to zero, for ξ1 large, which allows us to make the second integral
in (5.6) less than ε/3. The first integral in (5.6) can also be made less than
ε/3, since over its region of integration ξ1ϕ1 +Uξ >

ξ1δ
2 , which is large for ξ1

large. �

Example. Consider the problem (5.1). Assume that (5.2) holds, and in
addition b(u) is bounded, b(±∞) = 0, and b(u) > 0 for all u ∈ R. Then there
exists α > 0 so that the problem (5.1) is solvable if and only if µ1 ∈ (0, α].
Moreover, the problem has at least two solutions for any µ1 ∈ (0, α). Indeed,
we see that µ1(ξ1) > 0 for all ξ1, and, arguing as above, µ1(ξ1) → 0 as
ξ1 → ±∞. Hence the range of µ1(ξ1) is (0, α], and it is covered at least
twice. This generalizes Problem 13 on page 162 in A. Ambrosetti and G.
Prodi [3] (the e(x) term was not included there). Moreover, one can easily
extend this result by dropping the b(u) > 0 condition. (Then there exists
β ≤ 0 < α, so that the problem (5.1) is solvable if and only if µ1 ∈ [β, α]. If
µ1 ∈ (β, α) the problem has at least two solutions, except for the possibility
of exactly one solution at µ1 = 0.)

For monotone b(u) we have a uniqueness result.

Theorem 5.2. In addition to the assumptions of Theorem 5.1 assume that
b′(u) > 0 (< 0) for all u ∈ R. Then µ′1(ξ1) > 0 (< 0) for all ξ1 ∈ R, which
implies that for any µ1 satisfying the necessary condition (5.4) the problem
(5.1) has a unique solution.

Proof. Assume for definiteness that b′(u) > 0 for all u ∈ R. Then, by
Theorem 5.1, µ1(∞) > µ1(−∞), and hence µ′1(ξ1) > 0 at least for some
values of ξ1. Assume that µ′1(ξ01) = 0 at some ξ01 . Differentiate (5.1) in ξ1,
set ξ1 = ξ01 , and denote w = uξ1 |ξ1=ξ01

, obtaining

∆w +
(
λ1 + b′(u)

)
w = 0 for x ∈ U,

w = 0 on ∂U.

Clearly, w is not zero, since it has a non-zero projection on ϕ1. On the other
hand, w ≡ 0, since by the assumption (5.2) λ1 < λ1 + b′(u) < λ2. �
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Another way to “do business” at resonance, without imposing conditions
of Landesman-Lazer type, is due to D.G. de Figueiredo and W.-M. Ni [8].
Consider again the problem (5.1) at λ = λ1, with b(u) bounded, and satis-
fying (5.2). Assume also that b(u)u > 0 for all u ∈ R. From (5.3)

µ1 =
∫
U
b(u)ϕ1 dx.

Arguing as in Theorem 5.1, we see that
∫
U b(u)ϕ1 dx > 0 (< 0) if ξ1 > 0 (< 0)

and large. It follows that the range of µ1(ξ1) includes an interval around zero.
In particular the problem (5.1) is solvable at µ = 0, which corresponds to
the result of [8] (we obtain an extension of that result, allowing for µ to be
non-zero, but not a generalization, since in [8] they had milder assumptions
on b(u)). We can also extend the positivity condition, by assuming that
b(u) > δ for u positive and large, and b(u) < −δ for u negative and large,
for some δ > 0.

The next case to consider is that of jumping nonlinearities. Problems of
this type have been extensively studied, with S. Fucik [9] being one of the
earliest contributions. We consider the problem

∆u+ g(u) = µ1ϕ1 + e(x) for x ∈ U, (5.7)
u = 0 on ∂U,

where

g(u) =
{
γ1u+ b1(u) if u ≤ 0
γ2u+ b2(u) if u > 0, (5.8)

with real constants γ1, γ2, and b1(u), b2(u) bounded for all u ∈ R. To apply
Theorem 4.1, we need g′(u) < λ2; i.e., we assume that γ1+b′1(u), γ2+b′2(u) <
λ2 for all u ∈ R. There are several cases to consider.
Case (i) γ1, γ2 < λ1. From (5.7)

µ1 = −λ1ξ1 +
∫
U
g(u)ϕ1 dx. (5.9)

Arguing similarly to Theorem 5.1, we see that, for large ξ1, µ is asymptotic
to (γ2 − λ1)ξ1, and hence limξ1→∞ µ1(ξ1) = −∞. Similarly, as ξ1 → −∞,
µ1(ξ1) is asymptotic to (γ1 − λ1)ξ1, and hence limξ1→−∞ µ1(ξ1) = ∞. It
follows that the range of µ1(ξ1) is (−∞,∞), and hence the problem (5.7) is
solvable for all µ1.
Case (ii) λ1 < γ1, γ2 < λ2. We have similar conclusions, although now
µ1(ξ1)→ ±∞ as ξ1 → ±∞.
Case (iii) γ1 < λ1 < γ2 < λ2. It turns out that the range of µ1(ξ1) is
bounded on one side. Arguing as above, we see from (5.9) that µ1(ξ1)→∞
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as ξ1 → ±∞. Hence the range of µ1(ξ1) is [µ0,∞), for some µ0. It follows
that for µ ≥ µ0 the problem (5.7) has a solution, and no solution exists when
µ < µ0.

Case (iv) γ2 < λ1 < γ1 < λ2. This case is similar to (iii). This time µ1(ξ1)
is bounded from above.

Referring to (5.8), define b(u) =
{
b1(u) if u ≤ 0
b2(u) if u > 0. Let us now assume

that case (iii) holds, while b(u) ∈ C2(R), and satisfies

b′′(u) > 0 (and hence g′′(u) > 0) for almost all u ∈ R. (5.10)

Then µ1(ξ1) is bounded from below, and in fact we have the following
precise result, which is roughly equivalent to the one in the classical papers
of A. Ambrosetti and G. Prodi [2] and M. S. Berger and E. Podolak [4].

Theorem 5.3. The function µ1(ξ1) has a point of global minimum at some
ξ01, and µ1(ξ1) is strictly decreasing on (−∞, ξ01) and strictly increasing on
(ξ01 ,∞). The problem (5.7) has exactly two, exactly one or no solution,
depending on whether µ ∈ (µ(ξ01),∞), µ = µ(ξ01) or µ < µ(ξ01) respectively.

Proof. Differentiate the equation (5.7) with respect to ξ1 :

∆uξ1 + g′(u)uξ1 = µ′1(ξ1)ϕ1 for x ∈ U, uξ1 = 0 on ∂U. (5.11)

Assume that µ′1(ξ0) = 0 at some ξ0. Then, denoting w = uξ1 at ξ1 = ξ0, we
have

∆w + g′(u)w = 0 for x ∈ U, w = 0 on ∂U. (5.12)

This problem is a linearization of (5.7). Hence, if the problem (5.12) has only
the trivial solution, we can continue the solution u = u(x, ξ0) in µ, obtaining
solutions on an interval around µ(ξ0); i.e., the function µ(ξ1) does not have
an extremum at ξ0.

Assume next that the problem does have a non-trivial solution. Since
g′(u) < λ2, w is a principal eigenfunction, and so we may assume that w > 0
on U . Differentiate (5.11) once more in ξ1, and let ξ1 = ξ0 (recall that
µ′1(ξ0) = 0):

∆uξ1ξ1 + g′(u)uξ1ξ1 + g′′(u)w2 = µ′′1(ξ0)ϕ1 for x ∈ U, uξ1ξ1 = 0 on ∂U.
(5.13)

Combining the equations (5.12) and (5.13), we have

µ′′1(ξ0)
∫
U
wϕ1 dx =

∫
U
g′′(u)w3 dx,
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which implies that µ′′1(ξ0) > 0, so that any critical point of µ1(ξ) is either a
point of minimum, or a point of inflection. Hence this function has only one
extremum point, the point of global minimum, and the theorem follows. �

Dropping the convexity assumption, we have the following result, similar
to the one in H. Amann and P. Hess [1]. What we add is that all solutions
lie on a unique solution curve µ1 = µ1(ξ1).

Theorem 5.4. Consider the problem (5.7), with jumping nonlinearity as in
case (iii). Then the function µ1(ξ1) has a point of global minimum at some
ξ01. The problem (5.8) has at least two, at least one or no solution, depending
on whether µ ∈ (µ(ξ01),∞), µ = µ(ξ01) or µ < µ(ξ01) respectively.

Proof. The function µ(ξ1) is bounded from below, and hence it has a point
of global minimum. We claim that limξ1→±∞ µ(ξ1) = ∞, which clearly
implies that the range of µ(ξ1) extends to infinity, and is covered twice.
Assuming the claim to be false, we can find a sequence ξk1 → ∞, such
that corresponding µk ≡ µ(ξk1 ) are uniformly bounded. Consider now the
problem (5.7) with µ = µk. According to Lemma 3.2 in A.C. Lazer and
P. J. McKenna [13] corresponding solutions of (5.7), which we call uk, are
uniformly bounded in C1(Ū). We have uk = ξk1ϕ1 +Ukξ1 , with Ukξ1 uniformly
bounded in L2(U) by Lemma 2.2. It follows that the sequence uk is not
bounded in L2, a contradiction. �

And finally, we consider a sample case of “half-resonance.” Consider again
the problem (5.7), with g(u) satisfying (5.8). Assume also that λ1 < γ1 < λ2,
γ2 = λ1, and limu→−∞ b1(u) = 0, limu→∞ b2(u) = 0. Then as above we
conclude that µ1(ξ1) → −∞ as ξ1 → −∞, and µ1(ξ1) → 0 as ξ1 → ∞. In
particular the problem (5.7) is solvable for any µ1 < 0. This extends to
PDE’s (and in other ways too) a result of A. Castro [5]. A. Castro’s result
had an advantage of not requiring an upper bound on γ1.

6. Solution manifold for n > 1

Let us begin with the case n = 2, and then generalize. Again, we consider
asymptotically linear problems of the form (here λ is a parameter)

∆u+ λu+ b(u) = µ1ϕ1 + µ2ϕ2 + e(x) for x ∈ U, (6.1)
u = 0 on ∂U,

where e(x) ∈ L2(U) is orthogonal to ϕ1 and ϕ2, and b(u) ∈ C1(R) is a
bounded function, satisfying

λ+ b′(u) < λ3 for all u ∈ R. (6.2)
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We first consider the non-resonant case, when λ 6= λi, i = 1, 2, and show
that the problem (6.1) is solvable for any pair of (µ0

1, µ
0
2) ∈ R2. We decom-

pose the solution as u = ξ1ϕ1 + ξ2ϕ2 + Uξ. According to the Theorem 3.1
for every pair (ξ1, ξ2) we can find (µ1, µ2, u) solving (6.1). By Theorem 4.1
we can continue the solution between any two points of (ξ1, ξ2) plane. Our
goal is to find (ξ01 , ξ

0
2) corresponding to (µ0

1, µ
0
2). From (6.1) we obtain

(λ− λ1)ξ1 +
∫
U
b (ξ1ϕ1 + ξ2ϕ2 + Uξ)ϕ1 dx = µ1; (6.3)

(λ− λ2)ξ2 +
∫
U
b (ξ1ϕ1 + ξ2ϕ2 + Uξ)ϕ2 dx = µ2. (6.4)

If λ > λ1 (λ < λ1), we see that µ1 → ±∞ (µ1 → ∓∞) as ξ1 → ±∞,
uniformly in ξ2, since b(u) is bounded. Let us say λ > λ1, and we begin
continuation somewhere on the line ξ1 = −N of the (ξ1, ξ2) plane. We
assume N > 0 to be large, and hence µ1(ξ1, ξ2) is large and negative on
this line. We see from (6.4) that µ2 takes on both large positive and large
negative values when |ξ2| is large. Fix ξ2 = ξ02 , so that µ2 = µ0

2; i.e., at
the point (ξ1, ξ2) = (−N, ξ02) we have (µ1, µ2) = (µ̄1, µ

0
2), with some µ̄1. We

now begin to shift the line ξ1 = −N to the right; i.e., we consider the lines
ξ1 = −N + t, with t > 0. We repeat the above procedure, choosing the point
(ξ1, ξ2) = (−N + t, ξ02(t)) at which (µ1, µ2) = (µ̄1(t), µ0

2). Observe that from
(6.4) ξ02 is continuous in ξ1, i.e., continuous in t. From (6.3) we see that
µ̄1(t) is continuous in ξ1 and ξ02 , i.e., continuous in t. For large t, µ̄1(t) will
transition to large positive values. Hence at some t, i.e., at some (ξ01 , ξ

0
2), we

obtain (µ1, µ2) = (µ0
1, µ

0
2).

We consider next the resonance case λ = λ2. Assume first that the (finite)
limits b(±∞) exist. Set

A = b(∞)
∫
U+

ϕ2 + b(−∞)
∫
U−

ϕ2, B = b(−∞)
∫
U+

ϕ2 + b(∞)
∫
U−

ϕ2,

where U+ = {x ∈ U : ϕ2(x) > 0} and U− = {x ∈ U : ϕ2(x) < 0}.
Arguing as in the proof of Theorem 5.1, we see from (6.4) that µ2 → A as
ξ2 →∞, and µ2 → B as ξ2 → −∞. Then the same argument with the lines
ξ1 = −N + t shows that the problem

∆u+ λ2u+ b(u) = µ0
1ϕ1 + µ0

2ϕ2 + e(x) for x ∈ U (6.5)
u = 0 on ∂U

is solvable for any µ0
1 ∈ R, and any µ0

2 ∈ (min(A,B),max(A,B)).
We also have an analog of D.G. de Figueiredo and W.-M. Ni result [8] (see

also Theorem 1.10 in A. Ambrosetti and G. Prodi [3]). If b(u) is bounded
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below by a positive constant for u > 0 and large, and bounded above by
a negative constant for u < 0 and large, the problem (6.5) is solvable for
µ0

2 = 0 and arbitrary µ0
1. Indeed, µ2 has to vanish somewhere on each line

ξ1 = −N + t, since it takes both positive and negative values on this line.
(µ2 =

∫
U+ b (ξ1ϕ1 + ξ2ϕ2 + Uξ)ϕ2 dx+

∫
U− b (ξ1ϕ1 + ξ2ϕ2 + Uξ)ϕ2 dx, with

the sets U+ and U− as defined above. When ξ2 → ∞, both integrals are
positive, and they are both negative when ξ2 → −∞.)

We consider next the case of n = 3, after which generalization to general
n will be transparent. We consider the problem

∆u+ λu+ b(u) = µ1ϕ1 + µ2ϕ2 + µ3ϕ3 + e(x) for x ∈ U, (6.6)
u = 0 on ∂U,

where e(x) ∈ L2(U) is orthogonal to ϕi, i = 1, 2, 3, and b(u) ∈ C1(R) is a
bounded function, satisfying

λ+ b′(u) < λ4 for all u ∈ R. (6.7)

We consider the non-resonant case, when λ 6= λi, i = 1, 2, 3, and show
that the problem (6.1) is solvable for any triple (µ0

1, µ
0
2, µ

0
3) ∈ R3. In the

parameter space (ξ1, ξ2, ξ3) consider the plane ξ3 = M . By above, on any
such plane we can find a point (ξ01 , ξ

0
2) at which (µ1, µ2) = (µ0

1, µ
0
2). Multi-

plying (6.6) by ϕ3 and integrating, we see that as M varies over the interval
(−∞,∞) so does µ3. Hence we can select M where µ = µ0

3 at the point
where (µ1, µ2) = (µ0

1, µ
0
2); i.e., we obtain a solution at the desired point

(µ0
1, µ

0
2, µ

0
3).

7. Symmetry breaking

As an application of our results, we can give a simple proof that for b > λ2

the problem

∆u+ bu+ = ϕ1 for x ∈ B, (7.1)
u = 0 on ∂B

has multiple non-radial solutions. Here B is the unit ball centered at the
origin in R2, b a parameter, and u+ = max(u, 0). Recently existence of one
non-radial solution was proved (among other things) by F. Pacella and P.
N. Srikanth [14] for b > λ2, and b sufficiently large, for balls in Rn. (Our
approach appears to be applicable for balls in Rn too, but we did not pursue
that.)
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If the ball B is two dimensional, then the eigenvalues of the Laplacian
with zero boundary conditions are (µkj )

2, and the corresponding eigenfunc-
tions are Jk(µkj r) cos kθ and Jk(µkj r) sin kθ, where Jk(r) is the k-th Bessel
function (k ≥ 0), and µkj is its j-th root (j ≥ 1). Mathematica readily
gives µ0

1 ' 2.40483, µ0
2 ' 5.52008 and µ0

3 ' 8.65373, while µ1
1 ' 3.83171,

µ1
2 ' 7.01559, µ1

3 ' 10.1735, and µ2
1 ' 5.13562, µ2

2 ' 8.41724, µ2
3 ' 11.6198.

(The command BesselJZeros[n,3] gives the first three roots of Jn.) It follows
that λ1 = (µ0

1)2 and ϕ1 = J0(µ0
1r), λ2 = (µ1

1)2 = λ3, with ϕ2 = J1(µ1
1r) sin θ

and ϕ3 = J1(µ1
1r) cos θ. Then one has λ4 = λ5 = (µ2

1)2, and so on. We have
λ1 < λ2 = λ3 < λ4 = λ5 . . ..

Theorem 7.1. For any λ2 < b < λ4 the problem (7.1) has four non-radial
solutions.

Proof. We shall prove that the problem (7.1) has a solution with non-zero
projections on ϕ2 and ϕ3 of the form

u = ξ1ϕ1 + ξ2ϕ2 + ξ2ϕ3 + Uξ, (7.2)

with ξ2 6= 0. By Theorem 3.1 for any triple (ξ1, ξ2, ξ2) we can find a unique
triple (µ1, µ2, µ3) and u(x) solving

∆u+ bu+ = µ1ϕ1 + µ2ϕ2 + µ3ϕ3 for x ∈ B, u = 0 on ∂B. (7.3)

We claim that µ2 = µ3. Using polar coordinates (since B ∈ R2), we write
u = u(r, θ). Call u1 = u(r, π/2− θ); then u1 = ξ1ϕ1(r) + ξ2ϕ2(r, π/2− θ) +
ξ2ϕ3(r, π/2− θ) +Uξ = ξ1ϕ1(r) + ξ2ϕ3(r, θ) + ξ2ϕ2(r, θ) +Uξ, which implies
that u1 has the same 3 -signature as u. We claim that u1 satisfies (7.3),
with µ2 and µ3 switched. This will contradict the uniqueness of (µ1, µ2, µ3),
proving that µ2 = µ3. To prove the last claim, just observe

∆u1 + bu+
1 = µ1ϕ1(r) + µ2ϕ2(r, π/2− θ) + µ3ϕ3(r, π/2− θ)

= µ1ϕ1(r) + µ2ϕ3(r, θ) + µ3ϕ2(r, θ) .

To recapitulate, for any (ξ1, ξ2) we can find (µ1, µ2) and u(x) of the form
(7.2) solving

∆u+ bu+ = µ1ϕ1 + µ2ϕ2 + µ2ϕ3 for x ∈ B, u = 0 on ∂B . (7.4)

It suffices to show that we can find a point (ξ01 , ξ
0
2 , ξ

0
2), with ξ02 6= 0, so

that the corresponding µ0
2 = 0 and µ0

1 6= 0 is arbitrary. Indeed, then v = u
µ0

1

solves (7.1), and gives us a non-radial solution.
We claim that µ2 takes both negative and positive values at some points P

and Q in the upper half of the (ξ1, ξ2, ξ2) plane, i.e., when ξ2 > 0. Assuming
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the claim for the moment, join P and Q by, say, a straight line. Since µ2

changes continuously along that line, it must be zero somewhere; i.e., the
problem (7.1) has a non-radial solution of the form (7.2), with ξ2 > 0.

To prove the claim, we multiply (7.3) by ϕ2, and integrate

−λ2ξ2 + b

∫
B
u+ϕ2 dx = µ2. (7.5)

Write u(x) in the form u = s (a1ϕ1 + a2ϕ2 + a2ϕ3) + Uξ, with parameters
s > 0, a1, a2 to be chosen, i.e., here ξ1 = sa1, ξ2 = ξ3 = sa2. We claim that
if a1 and a2 are fixed in such a way that

a1ϕ1 + a2ϕ2 + a2ϕ3 is positive or negative on B, (7.6)

then for s > 0 large the quantity on the left in (7.5) is asymptotic to

s

[
−λ2a2 + b

∫
B

(a1ϕ1 + a2ϕ2 + a2ϕ3)+ ϕ2 dx

]
. (7.7)

Indeed, consider the difference between the integrals in (7.5) and (7.7)

|
∫
B

[
(sa1ϕ1 + sa2ϕ2 + sa2ϕ3 + Uξ)

+ − (sa1ϕ1 + sa2ϕ2 + sa2ϕ3)+
]
ϕ2 dx|

≤
∫
B
|Uξ||ϕ2| dx

since the function f(x) = x+ is Lipschitz continuous, with Lipschitz constant
one. The last integral is bounded uniformly in s, since ||Uξ||L2 ≤ c uniformly
in sa1, sa2 and sa3 that satisfy (7.6), by Lemma 2.2 (see Remark 1 after its
proof).

We now fix a2 = 1. If we now take a1 < 0 and large in absolute value so
that the integral in (7.7) is zero, we will get µ2 to be negative. If we take
a1 > 0 and large, so that a1ϕ1 + a2ϕ2 + a2ϕ3 > 0 on B, we see that µ2 is
asymptotic to

s

[
−λ2 + b

∫
B

(a1ϕ1 + ϕ2 + ϕ3)ϕ2 dx

]
= s(b− λ2) > 0 .

By the above remarks we obtain a solution in the form (7.2), with ξ2 = s > 0.
We obtain another solution by fixing a2 = −1. Similarly to above, if we

take a1 < 0 and large in absolute value, we will get µ2 > 0. If we take a1 > 0
and large, then µ2 < 0 for large s. We obtain a solution in the form (7.2),
with ξ2 = −s < 0.

The other two solutions are obtained in the form

u = ξ1ϕ1 + ξ2ϕ2 − ξ2ϕ3 + Uξ, (7.8)
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with ξ2 6= 0. By Theorem 3.1 for any triple (ξ1, ξ2,−ξ2) we can find a unique
triple (µ1, µ2, µ3) and u(x) solving

∆u+ bu+ = µ1ϕ1 + µ2ϕ2 + µ3ϕ3 for x ∈ B, u = 0 on ∂B.

We claim that µ2 = −µ3. The proof is similar to the one above, this time
setting u1 = u(r, 3π/2 − θ). Then, exactly as above, we produce a solution
of the form (7.8), with ξ2 > 0, and another one with ξ2 < 0, the third and
the fourth non-radial solutions of the problem (7.1). �
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