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1. Introduction.

We study existence of periodic solutions for nonlinear non-coercive

boundary value problems of the form

uy = g(x,u,Du.Dzu,Dau,D4u) y=1
(1.1) Au = ef[x,y,u,Du,DZu) 0<y<1
u=20 y = 0.
Here f and g are 2m periodic in each Hypowon X, € is a small parameter, and

we study existence of a 2mr periodic in each xi solution u(x,y).

Problems of the typs (1.1} come up in applications, e.g., in the
three—-dimensional water wave theory, see M. Shinbrot [8]. We are interested
in (1.1) primarily as a model non-coercive problem (i.e., the
Lopatinski~-Schapiro condition fails). In [3,4] we had considered the case of

second order boundary conditions. Here we consider boundary conditions of the
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fourth order, with generalization to an arbitrary order being quite

transparent.

Let us assume for the discussion purposes that g = r(x) ux1X1X1x1 ’

p( ) with p(0) = p(0) = 0. If one assumes r(x) = ry > 0 for all x,

u X, X
*1*1%1%

then the problem can be solved using the Picard iterations in suitable Banach
spaces (if f and g are smooth enough), see [5]. In case r(x) =z 0 there is a

loss of derivatives on each iteration step, which we overcome using the

Nash-Moser’s method. The theorem 5.1 below applies in particular to the case

r(x) z 0.

The main part of this paper consists in derivation of a priori estimates
for the linearized problem, which is carried out in lemma 3.1, and which
allows us to use the Nash-Moser technique. There are a number of versions of
the Nash-Moser method, see e.g., L. Hormander [2] and K. Tso [9] among the
most recent ones. We choose the one due to J. Schwartz [71, which appears to
be one of the simplest and well-suited for the elliptic problems (we introduce
a slight modification, which makes its application easier than in [3]).

In Section 6 we consider a perturbation problem on the torus

T = [0,2r]", of the type

2
= ,u,Du,D ),
aij(x) uij ef(x u )

where the operator on the left is assumed to be degenerate elliptic (in
particular parabolic operators are allowed). We prove solvability for
sufficiently small € by using the same version of the Nash-Moser technique.
Our result extends the well-known work of P. Rabinowitz [11] and T. Kato [10],

since we allow the perturbation term to depend on the derivatives of second

order.

EXISTENCE OF SOLUTIONS FOR TWO CLASSES OF NONLINEAR PROBLEMS

2. Notations and technical lemmas.

We consider functions of n + 1 variables x = (x ,...,xn] and y which

1

are 2m periodic in each X i=1,...,n. By V we denote the domain 0O = xi
=2r, 0 <y =1, 1=1,...,n; by 8V we denote its boundary, and Vt = {(x,1),
0 = X; = 2n for all i}. We shall abbreviate [ f = 5 f dxdy and { f= i f dx.
We shall write FTﬁm for the norm in the Sobolev sp%ce "), Hfﬁﬁ for the one
on Hm(Vt). We write D or V for the gradient and D2 for the Hessian in

variables x, y; D’, ¥/, D’2 and also D'a, D’4 for the same operations in the

variable x only. We shall also need the norms {in V and on Vt)

Ifl, = ¥ IDafI o’ N = integer = 0.
Jocf=N L

All positive constants independent of the unknown functions we denote by c.
We need the following standard relations between our norms (see [3] for
proofs and references).

Lemma 2.1. For any integer m = 0 and any € > 0 one can find a constant c(e)

so that
(i) anm = Hvum+1
(ii) Nva = cllvllm+1 + C(e]”v”o
(111) WVWm = elivil o+ elediivilg .
Lemma 2.2. Suppose fl, f2 ec'(V), r =0 is an integer. Then
(i) nflf2"r < c[lfllo "f2"r + ]leo “flnr]
ii f =
(ii) | leIr = c[lfll0 If2'r + Ileo (fllrl

Obviously, similar inequalities are true for functions on Vt'

Lemma 2.3. Suppose w W € ch(v). Suppose that ¢ = ¢(w1,...,w )

' s

possesses continuous derivatives up to order r = 1 bounded by c on
max |w,} < 1. Then
i
i
(1) "¢("J""’"s)"r = c(llw!lr + 1)

1A

(ii) l¢(w1,...,ws)|

P s cllul_+ 1)
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. : n
Corollary. If in addition we assume ¥ P % = 1 Pij(X)uiijj'
#(0 0) =0, r= [+ lecl=4 i, J=1
y sy = 5 T h .
Then 2
with ¥ Pij(X) gigi = 0 for all x and gl,...,gn.
HQwy, .o W N = a(twll ), 1,5=1

(ib) In case n = 2 the third order terms have the following structure

where 8(t) 3 0 as t » 0. (We denote Hwﬂr = mawaiﬂr). Similar conclusions n [
i : 7 rfxpr*fu=3 Fi.(XJui...
laf=3 1= Y

hold for functions on Vt'

Lemma 2.4. Let £, k, m be non-negative integers, k = m. Then

k/m 1-k/m (If n = 2 this assumption is automatically fulfilled.)

(1) Hutly = cliull 2 thuly .
<
ii) Py = 3.
. X/m 1-k/m Then for £ and 8 sufficiently small the following a priori estimates hold
(i) IIuHk+£ = cﬂuﬂm+£ Hu“e . d

(m = integer)

3. A priori estimates and existence in the linear case.
Huﬂm + Hunm = c(Fm + paFm

+1 .+ meBJ’ m=z4

+1 -1 * Psfnp

(3.2)

We start by deriving a priori estimates for the following non-coercive
Wal o+ Tl o= cF , m=0,1,2,3.

in general problem.

Lemma 3.1. Consider the problem (x € Rn)
— Proof. Step 1. Multiply the equation in (3.1} by u and integrate by

parts.
uy - Au+ ¥ r2 )0 % = glx ) y=1
ol=4 P =
= o (3.3) v - piva® -5 p rupfus Fug = fu
(3.1) Au-€ ¥ c (x,y)Du=f(xy) 0<y<1 t t |al=4 t
la]=2 vel T caquu;
u=20 y =0, fxl=2
..=fr,u, ., v Jr, uwu,, +2 fr,, uu..
Iory gy T gt T T ™ T T s
with all the functions assumed to be 2m periodic in each % i=1,...,n
o a — v 2
Denote (k = integer = 0) r, = max Ir |, ¢ = max lc'l, p =1 +cp, The last two terms in the formula above can be absorbed into S [v'ul® + [IVul
k Lo =4 k' "k loc] =2 k k k k i
F, = = = =
X Hfuk + Hgnk. Also we denote Py = Py Pg = PPy + Py s P = PyPp as follows.
+ PgPy o + ... F PL_1Py + Py for k = 5.
Assume the following: = - w, ~Jr PPN
{ iJ,35 it {rlJ,le p Lhdd ol
(ia) The fourth order terms have the following structure 1 P
S r.. .uu,=-Jr vu, +5Jfr., .. u
) PO BN BN I ¢ idJr g2y 1533



522 , KORMAN

Corollary. If in addition we assume

$(0,...,0) =0, r=z [“;——l] + 1.
Then
Ny, - N = Sl ),

where 8(t) > 0 as t » 0. (We denote Hwﬂr = maxilv ). Similar conclusions

]
i i'r

hold for functions on Vt'

Lemma 2.4. Let £ k, m be non-negative integers, k = m. Then

k/m 1-k/m

(1) Ilullk+ = cllullm+ fhuty

¢ 14
s — ——k/m —rl-k/m
(i1) “u“k+ﬂ = C“u"m+8 uuu£

3. A priori estimates and existence in the linear case.

We start by deriving a priori estimates for the following non-coercive
in general problem.

Lemma 3.1. Consider the problem‘(x e ’M

u - Au+ ¥ (D" % = glx ) y=1
Y lel=4
(3.1) Au - & ¥ ca(x.y)Dau = f(x,y) 0<y<1
la|=2
u=20 y =0,
with all the functions assumed to be 2mn periodic in each xi, i=1,...,n.
i = v o = & =
Denote (k = integer z 0) r= max |r Ik’ Sy max |c lk’ P = Ty * Cp
lal=4 laf=2
F, = . = = =
k llfllk + llgllk Also we denote Py = Py Pg = PyPy + Py v P = PaP
R I R S 1 P for k = 5.

Assume the following:

(ia) The fourth order terms have the following structure
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n
y orfxrfu= ¥ or L 00u
lal=4 i, W
n .
Withl,gil PiJ(x) Eigi = 0 for all x and gl,...,gn.

(ib) In case n = 2 the third order terms have the following structure

n
o o —
% = .00,
Ia)|:=3 Feo 1?:J=1r13()()u1

'

JJ°

(If n = 2 this assumption is automatically fulfilled.)

(11) py = 8. A\

523

Then for £ and & sgfficiently small the following a priori estimates hold

(m = integer)

Hull =
ull + Ilullm+1 = C(Fm + p4Fm_1 + pSFm-Z oL meB)' m=z= 4

(3.2)

lhall + Tl =c¢cF , m=0,1,2,3.
m m m

+1 +1

Proof. Step 1. Multiply the equation in (3.1) by u and integrate by

parts.
S0 _
(3.3) vl - pavai? -5 § rupCus fug = Jfu
t t lal=4 t
+eJ L cauDau;
loi=2
= . + 2 r.. ,U.u,..
ey gy = Tttt HRERR Dl 8 R Rt

.2 2
The last two terms in the formula above can be absorbed into [ 1V ul™ + Jlvul
t

as follows.

= - U § LS S r,. .. U, 3
{ 1,49 M { Tig, g3 i { ij,33 1
I r uaw,, =-Jr,. ..uu + L Sr,. .4
p 13 d i1 M 2, 15,3 1
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Treating the terms corresponding to lal = 3 and lal = 2 in a similar fashion

. and using lemma 2.1, we easily derive from (3.3)

(3.4) I IVul2 + f [V’ulz = c(eliull, + ff2 + I g7
t t

Step 2. Multiply the equation in (3.1) by ukk and integrate by parts

(1 =k =n).

b lal=a o kk t

o o
I fukk + eIla%Lz c ukkD u.

(3.5) I IVukl2 + I Iv'ukl2 -J ¥ ru D%+ J u 8
t

"

After repeated integration by parts

{ Ty Mactingg T { Tyt Y { Ty, 3a%actes
+ 2 { rij,Jukkjuii
- { rij“kjj“ki; - { T, gtkkgta v { P13, 55kt
v2 { Ty 3, Mt

The second, third and fourth terms on the right after repeated integration by

n
parts are easily absorbed into J} J IV’uklz.
k=1 t

From the equation (3.1) we estimate
n
2 2 2
= c v + £7).
J Uy ( § J 1 ukl I £7)
k=1
Combining this with the estimate (3.5), summing in k, we get
um2+nw25c&mm2+um +H95L

0

from which our estimate (3.2) follows with m = O.
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Step 3. Let B = (Bl,...,Bn,O), 18] = m. Differentiate (3.1) and
denote uB = DBu, ep—coordinate vectors in Rn
n B-e
Bl v p%f s Y. ¢ T % Pel= gB y=1,
Y lol=4 p=1 P laf=a P
(3.8) AP - ¢ ¥ caDuuB - ... = fB 0<y<l1,
la]|=2
uB =0 y = 0.

B

Multiply (3.6) by u  and integrate by parts,

\

\

- I quBI2 -J W’uBl2 - D PauBDauB -

t Jal=4 t
n B-e
(3.7) - c r J rauBDau P+ uBgB = uBfB +
p=1 P lal=4 13 t
n B-e
+e ¥ fp%f 4 e vc y J Pt P,
la]=2 p=1 p laf=2 p
Similarly to the Step 1
(3.8) r, PB = .ug. ?. + o ?.
R SR TP R L TR I Rt
B. B
+2f rij,jujuif
Denote B - ep =4y, |yl =m- 1. Then for |a| = 4,
B-e
(3.9) 5 uBDau Por, . TLARTLI
i P ¢ id.p P o1idd
¥ v v
=fr,, ..u u.+Jfr u’ .oy,
{ ij,pdj p it { ij,p PJJ il
+2 .. . u? W’
» t 13,pd PJ 11

One easily sees that all terms on the right in (3.8) and (3.9) can be absorbed

into the first two terms on the left in (3.7). Similarly the third and the
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fourth terms on the left in (3.7) as well as the first four terms on the right

in (3.7) are absorbed into the first two terms on the left in (3.7). So that

) IVuB!2 + { IV'uBlz = c(Fﬁ + ri Huﬂi + oL * ri Huﬂi
2 2 2, .2
(3.10) +cy L cmHuHZ).
Multiply- (3.6) by uB integrate by parts and sum in k = 1,...,n.

“kk’

Proceeding similarly, we estimate

B2 , B.2 L2 2 2 -—2 2 2
I IVukl + { Iv ukl = c(eﬂu"m+2 + Fm +ry, Hunm ok Hull4
2 2 2 2
(3.11) +cy HuHm_2 ...+ op Huuz).

S

Summing in all B with |gl =m, m = 4, and estimating all the missing

derivatives from the equation (3.1}, we obtain

+ Huﬂm £ c[Fm + p4(uuum + Huum) + ps(llullm_1 + Huum_l) +

Wult
m +2

+2
+...+p¢uw4+umun,

from which (3.2) easily follows.

Lemma 3.2. Consider the problem (3.1). Assume that conditions (i)
and (i1) of lemma 3.1 are satlsfied; £ € H'(V), g & Hm(Vt), p, = c for
m = [g] + 4. Then for £ and 8 sufficiently small the problem (3.1) has a
unique solution of class Hm+2(V).

Proof. One easily verifies that the problem (o > 0)

u_ + vA’zu -~ tAfu+t § rp%u = g(x) y =1,
¥ lal=4
(3.12) Mu-e ¥ 0™ = flxy) 0<y<l,

la)=2
u=20 y =0,

is coercive at y = 1 for o > 0, 0 =t <1 and € small, i.e., the

Lopatinski-Shapiro condition is satisfied, and that the estimate (3.2) holds
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with ¢ independent of o. To see coercivity one follows the proof of lemma G.1

in [3], throwing out lower order terms and freezing all ru, c® at some (xo,l)
. . - 1 ix-€
€ V., and then taking the Fourier transform v(§) = ————E7A~f e
(2m)™?

One notices that the Fourier transform of the boundary condition at y =1 is

u{x)dx.

(rlgl® + t1gl v ¢ T G)EEDY
i,j=1

with the bracket being positive by our assumptions. The rest of the argument

is exactly as in lemma 5.1 of [3].

Since the problem (3.12) is coercive it defines a Noether map from

m-5/2

H"*2(v) into H™V) x H

(Vt), whose index is invariant of homotopy
transformations which do not take the problem out of the coercive class.

Letting t,e > O we see that the index of (3.12) is the same as that of

2
+ oA"Tu = =1,
uy 0 g Yy
(3.13) Au = f 0<y<1,
u=20 y = 0.

By an elementary Fourier analysis one sees that the problem (3.13) is uniquely
solvable, so that its index is zero (the general elliptic theory applies to
(3.13)). Since the estimate (3.2) implies uniqueness and (3.13) has index O,
it follows that the problem (3.13) is solvable. Denote its solution for t =1

m+1

by v’. Since Hvﬁﬂm < ¢ it follows that {v°} is precompact in H (V), and

+2
hence it converges to some v & Hm+l(V) as o0 » 0 along some sequence. Passing
to the limit in (3.12) as t = 1 and o > 0, we see that v is solution of (3.1).

By lemma 3.1, v € Hm+2(v), completing the proof.

4. Nash’s Implicit Function Theorem.

We start by introducing a standard concept of a scale of Banach spaces.

Definition 1. Suppose we have a family of Banach spaces B" indexed by a
m
parameter m =z 0. We say that this family forms a Banach scale if " cB ! for

m>m, and flul_ = lul_for u e B".
1 m1 m
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Definition 2. We call B™ a Banach scale with smoothing if there exists a

family of smoothing operators S(t), depending on a parameter t = 0, with the

properties (0 = r = p, I-identity operator)

p-r r
(Sll HS(t)qu = ct Huﬂr , ueB

2

(s.) BeI-S(t))ul_ = ct™Purun ., u e B
r s

It is well known that Hm(V) is a Banach scale with smoothing.

The following theorem is a slight modification of J. Schwartz’s form of

the Nash’s implicit function theorem, see [7]. The proof in [7] contained

some errors, which turned out to be easily correctable along the same lines.

Theorkem 4.1. Let BT, Bg be two Banach scales, the first one with
smoothing. Let F(u): B® 5 B % (0 = « ='m) be a (non-linear) operator with
1 2

the domain D(F) = {u € BT, Huum < 3, 8 > 0}. Suppose that

(1) F(u) has two continuous Frechet derivatives both bounded by c.

(i1) There exists a map L(u) with domain D(L) = D(F) and range in the

space B[Bg~u, BT_a) of bounded linear operators on Bg-a to BT_a
such that
(iia) F/(wL{wh = h , he Bg_“, u e D(F)

(iib) WL(whi __ = clhl ., he B, % u e D(F)

m+9cc
(iic) "L(u)F(u)"m+8m = c(1+uuum+9a), u e B1 n D(F).

Then if HIF(0)I is small enough, F(D(F)) contains the origin.

n-o
Proof. Let k = %; B, i, v positive constants to be specified later.
Set U = 0 and define inductively
"
(4.1) u =u - SL(u)F(u) , S =Sle )
n+l n n  n n n

We will prove inductively that

m+9o
(4.2.n) u e D(F) n B1
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n+l
(4.3.1) fha o HoBK

A

- u i
n+1 nm

n
vafi

IA

(4.4.n) 1 + llu il
n m+Sa

Assume that (4.2.3), (4.3.J§), (4.4.J) are true for O = j = n. Estimate

n © umBKj+1
lu I = Tlu, , -~ull = 7 e
n+l m 3=0 J+1 Jm j=0
. o paB(x-1)(3+1) _ o THaB(x-1)
= L e B —paB(-1) <3
J=0 1-e

if B is chosen sufficiently large. This gives the first part of (4.2.n+1).

Next
(4.8) i - =
Ui un+1um "Sn+1L(un+1)F(un+l)"m
n+l n+l
afK 2 _oBk
= ce HL(un+1]F(un+1)Nm_“ = ce HF(un+1)Hm_a
n+l
2 ofiK
= ce HF - F’
(un) F (un)SnL(un)F(un]"m_a
n+l n+l
. c3ea3k e 2UafK

For the last step the Taylor series with lLagrange remainder was used.

Estimate

WF(u ) = F'(u)S Llu YF(u )i = 0F (u ) (I-S JL(u JF(u ) o

n
< (2. BaBx

"L[un)F(un)"m+8a

2 —SQBKn 2 —BaBKn vaBKn
= cCc e + =
(1 "un"m+9a) c’e e .

Hence (fix ¢ > 1)

S5
I = c {exp aBKn(K—8+u) + exp aﬁxn+l(1—2u))

flu -u
n+2 n+l m

n+2
- e—uaﬁk

provided B is large enough and
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2
(4.8) K-8+ v < -ux” , 1 - 2u < -px.
Next
n
|
1+ "“n+1"m+9a =1 + jzg nSjL(uj)F(uj)lm+9a
n J
o3k
=1+c ng e "L[UJ)F(UJ)"m+8a
n J
=1+ c2_2 (1 4 i)
J=0
n J n+1l
=1 + c2 ¥ em‘B(thc = evaBK
‘j:

provided B is earge enough and
(4.7) 1 + v < kv,

3
The induction step is now complete once we notice that one can pick p > 5

T g, v >3, ve=3 K= %~satisfying both (4.6) and (4.7). To prove (4.3.0)

we write

- < ceP®
Iy, -ugh = ISGLOIF(O) = ce "IL(OIF(OMN,

= cePYurcon = o HaBx
m-o

assuming "F(O)“m—a is chosen small enough (after fixing all the constants).

With (4.4.0) holding if B is large enough, the proof is now complete.
5. Existence for the Nonlinear Problem.

We are ready now for the main existence result. Laplacians in both

equation and the boundary condition can be easily replaced by general second
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order uniformly elliptic operators. The crucial condition (i) comes from the
lemma 3.1. It ensures positivity of the linearized operator at the boundary.
This hypothesis appears to be natural since it excludes the possibility of

small divisors (see [3]).

Theorem 5.1. Consider the problem

. 3
u, - A'u = g(x,u,D’u,D’zu,D’ uyD’4u) y =1,
(5.1) Au = ef(x,y,u,Du,Dzu) 0<y<1,
u=0 ~ y = 0.
Denote r¥ = - éga— and ¢* = - Bfa ; and assume that
8D u 8D u
(i) r%® have the same structure as in the conditions (ia) and (ib) of

lemma 3.1. Moreover, they vanish identically at u = 0 for all la] = 4.

(ii) g(x,0,...,0) =0, f(x,y,0,...,0) # 0, and both functions are 2u

periodic in each xi, i=1,...,n
) n
(iii) f,g € C = in all variables, with my = 10[§] + 58.

Then for & sufficiently small the problem (5.1) has a 2m periodic in each

x, solution of class C4(V).

Proof. Define an operator F(u): BT > Bg—a as follows

u - A'u - g(x,u,D’u,D’zu,D’Bu,D’4u)
F(u) = y 2
Au - ef(x,y,u,Du,D7u)

with the Banach scales (BT is known to be a scale with smoothing)

Bl = {u e H'(V), Wul =5 and u(x,0) = 0},

B, * = H%(v) x H%(V,) with the norm - + MW
t m-o m
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Here m = 2[2] + 10, a = [g] + 6, and the constant 8 will be specified later.

We shall get solution of our problem by solving
(5.2) F(u) = 0.

For this we verify the conditions of the theorem 4.1. Compute

AV - & ), c*p*v
laf=2

By lemma 2.3 and the Sobolev imbedding we estimate

= c(iiull + 1) = c(8+1) = ¢,

-
A

.
m-o %ax ir “m—a+[2]+l n-a+[21+6
o 2 2

+ 1) = ¢,

o
(5.3) Ca = mzx lic “mAa+[§%lJ+l = c(lull

m—u+[%]+4

o
= t 0.
r, = mzx Iir H[ 21+ B(Munm), where 8(t) >0 as t =

So that for u e BT

IE (Ol = sup (v, - Av + % TV
vl msl lal=4

+ Ilav - € % caDava ) =c,

and the boundness of F”(u) is proved similarly. In the same way one checks

that

sup I(F’(u) = F’(w))vil < g if llu-wll_ < 8(€),
m-o m
Hvumsl

which implies continuity of F/(u). The continuity of F”(u) is proved

similarly.
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Conditions (iia) and (iib) of the theorem 4.1 follow from lemmas 3.2 and

3.1 respectively in view of the estimates (5.3). It remains to check (iic)

By lemma 3.1

(5.4) IL(WF( o = clFp g,y * PiFrigan ¥ Y Poiga-173
.
Denote T = HuHEZEZ‘[H/Z]“g. By lemma 2.4 we have (k = [n/2} + 10,...,m+9a-1)
k-[n/21-9 | k-[n21-8
. = c“u"m+9a—[n/2]~9 tl m+9a-1n/21-9 _ CTk—[n/Z]—S
' m+90 [n/21+9 -
[
By (5.3) we have for k = 4,...,m+Bo-1
k-3
Py = C(”u“k+[n/2]+8 + 1) s clx + 1),
Then we obtain inductively
- m+8o—4
Py =Py = cle+l) » vy Prige-1 ° clt +1).
k-[n/21-4 o
Fk =< c(uuuk+5 + 1) = clt + 1), k =mn-4, ..., m8a-1,
Fk =c¢c, k=1, ..., m5.

Using these estimates in (5.4) we get

ILOFWI oo = (™8T4, 1) = el f 1),

+8a m+So

since m + 8a¢ - 4 = m + Sa - [n/2] - 9 by choice of «. So that by fixing m and

o as above, my = m + 8«, and £,3 small enough, we complete the proof.

6. A Singular Perturbation Problem.
We show that similar techniques produce existence results for a class of
singular perturbation problems. First we need two lemmas, analogous to

the ones of Section 3. VWe denote T = ™ = [0,2n}n, the n—-torus; Jf = Jf(x)dx.
T
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Lemma B.1. Consider the problem
(6.1) ulx) - aij(x)uij(x) - ai(x)ui - ao(x)u = £(x),
where all functions are 2m periodic in each x., i=1,...,n (i.e, x € T},
throughout

aij(X) is a symmetric matrix, and the summation convention is used

this section. Assume that
n
aij(x]ﬁigj =0 forall xeT, £€= (gl,...,gn) e R

For integer k = O denote

k
a = max((Iaolk,lailk,laemlk),
i,¢,m
_ .3 _ .3 4 n-1 n
p3 =a, p, = ap + a pn_2 + ... T a p3 + a for n = 4.

Then for a2 sufficiently small the following estimates hold (m = integer)

(6.2) Huﬂm = c(Hme + p3Hme_1 + pAHme_z L pmufﬂz], m> 2

lull = clifll for m = 0,1,2.
m m

Proof. To simplify notation assume that ai(x) = aO(x) = 0 for all i.

Multiply (6.1) by u and integrate by parts

2 1 2
o+ aijuiuj -5 I le,iJu = ffu ,
which implies (6.2) for m = O.
o a )
Let now u- = Du with {a«l = m. Then
(6.3) W - oa, ¥, - a%.u?fl - a?.u?iz - a?.u?ia - =%, = %,
ijiJ 1J 13 13 13 13 1) i 14
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where we denote a? ua—k = c Dwa..u?iw

RIS , c¢_ the coefficients from the
ij1J o=k ¥ 11

¥

Leibnitz rule. Multiply (86.3) by u* and integrate over T

2 o o 1 a1 « o o o o
6.4 “)e - RO AT - - = .
(6.4) J(u™) ) 23 4 54 T 2595 u J 2y 4 4 J £
Integrating by parts
_ oo 1 o, 2
J aijuiju I aijuiuj 5 I 255,13 (u)™.

Notice
1 ol a_ o [ erey ooy
(8.5) J 2y Y 5 u = kgl S S aij,kuij u
a-e, o€y
Consider the integral I = [ aij X uij u X We integrate by parts taking
the derivatives —g-and 7ga off the second factor, and the derivative —é— off
axi ::5x‘j Bxk

the third. We obtain

I =~1+ ...,
where all terms not shown on the right have aij differentiated exactly twice.
Solving for I we see that all terms on the right in (6.5) are easily absorbed

into } I(ua)z. Summing in « we obtain as in lemma 3.1 (for m > 2)
lal=n

3 4 m
Huﬂm = c("fﬂm + a Huﬂm_l + a llullm_2 + ... +ta HUHZ],

and the proof follows.
Lemma 6.2. Assume all conditions of the lemma 6.1, and that a" = c,
i n 2 -
feH(T), m=z max([§]+1,3). Then for a° sufficiently small the problem (6.1)
has a unique solution of class 2(T).

Proof. Consider (x € T", o = const > 0)
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(6.6) u - - eaju, -~ £a5u - oAu = f.

£235% 0
This is a uniformly elliptic equation on Tn, so its index (as an operator from
Hm+2(T) to H™(T)) is defined and homotopy invariant. By letting € > 0, we get
an equation

u - oghu = 7T,
whose index is zero, as follows by a simple Fourier analysis. One easily sees
that the estimates (6.2) hold for (6.6) with c independent of ¢, and hence

(6.8) can have at most one solution. Since the index of (6.6) is zero, it has

a solution v’ e Hm+2(T), and by (6.2)

lIuUlIm < ¢ , uniformly in o > O.

{

If o » 0 along a sequence, passing to a subsequence we get wWoue Hm-1

(1),

where u is a solution of (6.1). Applying (6.2) again, we conclude u ¢ Hm(T].

Theorem 6.1. On the torus T® consider the problem
2
(6.7) u = f(x,u,bu,Du).

Here f = fl(x,u,Du,DZu) + efz(x,u,Du,Dzu) with fl(x,O,D,O) = flu(x’O'O'O) =

f (x,0,0,0) = f (%,0,0,0) = 0 for all i,k,2=1,...,n, and both
lu, luk
i 2
functions are assumed to be 2m periodic in each X i=1,...,n. Denote
a, . = ot , a, = of_ , =8 . For x € T and other variables sufficiently
ij Buij i Bui 0 du

small in absolute values, assume that the conditions (i) of (ii) of lemma 6.1

m

are satisfied, and f € C 0 ith my = max([g]+l,3) + 9[§]+27. Then for €

sufficiently small the problem (6.1) has a 2m periodic in each x, solution of
class C2(T).
Proof. Define F(u) = u—f(x,u,Du,Dzu) and consider it as a map F:

B™(T) » HV%(T), where B" = {u e HNT): lIuHm =< 38}, with constant 8 > O and
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integers m = a to be specified. We shall solve F(u) = O by applying the

theorem 4.1. Compute

F'(u)v = v -f v,, - f v, - f v,
u, ., ij u, i u
ij i
” - _ -
F’(u)(v,w) = fu .ukevijwkl T ika .

u, u Y
ij ij 'k

Assuming m - o = [g] + 1, a = 2 we can estimate

'

WE“ () (v, )l = HE vl
- 13%e Y
= c(1+HuHm_“) il o fwll oo ¥ --- = clVI il

swhich shows that F”(u) is bounded unifgrmly in u. The boundness of F’(u) as

well as continuity of F’(u) and F”(u) is shown similarly.

Conditions (iia) and (iib) follow from the estimate (6.2) and lemma 6.2,
assuming additionally that m - &« = max([n/2] + 1,3), a = [n/2] + 3. Indeed by
lemma 2.3

m-o 2
a =< C("u"m~a+[n/2]+3 + 1) =c, a = o0(8).

To verify (iic) we apply the estimate (6.2) again:

(6.8) HL(u)F(u)Hm+8a = C(“F(U)"m+8a + pB“F(u)"m+8m—l +...+pm+8aHF(u)H2).
1
e ey
If we denote 1 = ﬂuﬂm+9a n/2]-5 , then by lemma 2.4
m+Qo
k-[n/21-5 1 k-[n/2]1-5
m+8a-[n/21-5 “m+9«-[n/2]-5 k-[n/2]1-5
Hqu = cHuﬂm+ga HuH[n/2]+5 = cT R
for k = [g] +6,...,m + 8a - 1. Then as before
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k _ k-2 | _ .
a = C("u"k+[n/2]+3 + 1) = clT + 1), k=3,...,m + 8q;
Py B3 c('l.'k_2 +1), k=3,4,...,n + Ba;

k-[n/2]1-3 1), k =

HF(u)l!k = c(T m-1,...,m + Ba,

IlF(u)Hk =c, k=2,...,m - 2.

Using these estimates in (6.8), we estimate

ILCWFQI o0 = (™82

1
+80o 1,

1) = c(MuHm+9a
provided m + 8¢ -~ 2 = m + 9a - [n/2] - 5. So that by fixing « = [g] + 3,
m = [g] + 3 + max([n/2] + 1,3), ny = m + 8, and & sufficiently small we
conclude the proof.\

Example. The equation (u = u(x), x € Rl)

3 N
“ + gsin x

has a 2t periodic solution for & sufficiently small. The equation

3
u=u”" + sin x

can be reduced to the one above by scaling u and X, and hence it has a

solution of pericd 2mn, if n is a sufficiently large integer.
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