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Non-Autonomous Dirichlet Problems
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Abstract. We prove that the semilinear Dirichlet problem for a Laplace equation on

a unit ball, involving the nonlinearity f ðr; uÞ ¼ �aðrÞuþ bðrÞu p, with a subcritical p,

has a unique positive solution, provided aðrÞ is positive, increasing and convex, while

bðrÞ is positive, decreasing and concave. Moreover, we prove that this solution is

non-degenerate. We also present a uniqueness result in case aðrÞ is negative.
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1. Introduction

We study the global curve of positive solutions of a class of Dirichlet

problems on balls in Rn, with explicit dependence on r ¼ jxj

Du� laðrÞuþ bðrÞu p ¼ 0 r A ð0; 1Þ; u ¼ 0 when r ¼ 1;ð1:1Þ

for subcritical constants p < ðnþ 2Þ=ðn� 2Þ for n > 2, and p < y for n ¼ 1; 2.

Here l is a positive parameter. We assume that aðrÞ is positive, increasing

and convex, while bðrÞ is positive, decreasing and concave. These conditions

imply, in particular, that the classical theorem of B. Gidas, W.-M. Ni and L.

Nirenberg applies, and hence any positive solution of (1.1) is radially sym-

metric. We show that all positive solutions of the problem (1.1) lie on a unique

smooth curve, which extends without any turns for all lb 0. In particular, we

conclude the existence and uniqueness of positive solutions for any l > 0. In

case of constant aðrÞ and bðrÞ the problem has been studied by a number of

people, and is by now completely understood, see e.g. M. K. Kwong [7], P. N.

Srikanth [12] and L. Zhang [13]. Allowing the coe‰cients to depend on r

considerably complicates the problem, and so the problems of this type are

relatively little studied. We recall that various uniqueness results for the

problem (1.1) have been given in the well-known paper of M. K. Kwong and

Y. Li [8], and in P. Korman [5].
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In this work we use a global approach. We show that all positive sol-

utions of (1.1) are non-degenerate, i.e. the corresponding linearized problem has

only the trivial solution, and hence we can continue for all l > 0 the unique

positive solution which exists at l ¼ 0. To prove non-degeneracy of solutions,

we proceed similarly to P. Korman, Y. Li and T. Ouyang [6] and T. Ouyang

and J. Shi [10], although the details are more involved now. We obtain a

considerable extension of the uniqueness results in M. K. Kwong and Y. Li [8],

and in P. Korman [5].

By somewhat di¤erent methods we consider the problem

Duþ laðjxjÞuþ u p ¼ 0 r A ð0; 1Þ; u ¼ 0 when r ¼ 1;ð1:2Þ

where aðrÞ is positive and decreasing. In Section 5, under some additional

conditions we prove uniqueness of positive solutions, giving another extension of

the previous results in [8] and [5]. We also consider the case of increasing aðrÞ,
and prove existence of a curve of solutions, which admits no turns.

Our results apply to more general classes of equations. We present several

generalizations. Throughout the paper we consider only the classical solutions.

2. Non-degeneracy of solutions

We study existence and uniqueness of positive classical solution for the

problem ðr ¼ jxjÞ

Duþ f ðr; uÞ ¼ 0 r A ð0; 1Þ; u ¼ 0 when r ¼ 1:ð2:1Þ

It follows from B. Gidas, W.-M. Ni and L. Nirenberg [2] that under the

condition

frðr; uÞa 0 for all r A ½0; 1Þ and u > 0ð2:2Þ

any positive solution of (2.1) is radially symmetric, and hence it satisfies

u 00ðrÞ þ n� 1

r
u 0ðrÞ þ f ðr; uÞ ¼ 0 r A ð0; 1Þ; u 0ð0Þ ¼ uð1Þ ¼ 0:ð2:3Þ

In this section we consider f ðr; uÞ ¼ �aðrÞuþ bðrÞu p, where 1 < p <

ðnþ 2Þ=ðn� 2Þ for nb 3, and 1 < p < y for n ¼ 1; 2. The functions

aðrÞ; bðrÞ A C2ð½0; 1�Þ are assumed to satisfy

aðrÞ > 0; bðrÞ > 0; a 0ðrÞb 0; b 0ðrÞa 0 for all r A ½0; 1�;ð2:4Þ

and

a 00ðrÞ > 0 and b 00ðrÞ < 0 for all r A ½0; 1�:ð2:5Þ
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Notice that these conditions imply (2.2), and so all positive solutions of (2.1) are

radially symmetric. I.e. we study the positive solutions of

u 00ðrÞ þ n� 1

r
u 0ðrÞ � aðrÞuþ bðrÞu p ¼ 0 r A ð0; 1Þ; u 0ð0Þ ¼ uð1Þ ¼ 0:ð2:6Þ

We shall need the following form of Sturm’s comparison theorem, taken

from [9]. We consider a di¤erential operator, defined on functions u ¼ uðrÞ of

class C2

L½u�1 pðrÞu 00 þ qðrÞu 0 þ zðrÞu;

with continuous coe‰cients pðrÞ, qðrÞ and zðrÞ.

Lemma 2.1. Assume that on some interval I J ð�y;yÞ we have pðrÞ > 0

and

L½u�b 0;

while

L½v�a 0;

with at least one of the inequalities being strict on a set of positive measure.

Then the function vðrÞ oscillates faster than uðrÞ, provided that they are both

non-negative. More precisely, assume that uðaÞ ¼ uðbÞ ¼ 0 for some a; b A I ,

uðrÞ > 0 on ða; bÞ, while vðaÞb 0. Then vðrÞ must vanish on ða; bÞ.

Crucial role will be played by the linearized problem for (2.1)

L½w�1w 00ðrÞ þ n� 1

r
w 0ðrÞ þ fuðr; uÞw ¼ 0ð2:7Þ

r A ð0; 1Þ; w 0ð0Þ ¼ wð1Þ ¼ 0:

Recall that solution of (2.3) is called non-degenerate if the linearized

problem (2.7) admits only the trivial solution. We show next that all positive

solutions of (2.6) are non-degenerate.

Lemma 2.2. Under the conditions (2.4) and (2.5) the problem (2.7) has only

the trivial solution w1 0.

Proof. Let uðrÞ be a degenerate solution of (2.6), i.e. (2.7) has a non-trivial

solution wðrÞ. We shall use a test function v ¼ rur þ mu with a constant m to be

specified. One easily checks that vðrÞ satisfies the equation

L½v� ¼ mð fuu� f Þ � 2f � rfr:ð2:8Þ
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The sign of the function L½v� is governed by the function m ¼ jðrÞ, where

jðrÞ ¼ 2f

fuu� f
þ rfr

fuu� f
:ð2:9Þ

Indeed, L½v� > 0 ð<0Þ, provided that jðrÞ < m ð>mÞ. (Observe that

fuu� f > 0.) For our nonlinearity f ðr; uÞ one easily computes

ðp� 1Þ jðrÞ ¼ �2
aðrÞ
bðrÞ u

1�p þ 2� ra 0ðrÞ
bðrÞ u1�p þ rb 0ðrÞ

bðrÞ :ð2:10Þ

One checks that under our conditions j 0ðrÞ < 0 for all r A ð0; 1Þ, and hence jðrÞ
is a decreasing function. We claim next that

f ð0; uð0ÞÞ > 0:ð2:11Þ

Indeed, writing f ðr; uÞ ¼ uð�aðrÞ þ bðrÞu p�1Þ, we have in the brackets a

decreasing function. If inequality (2.11) was violated, we would have

f ðr; uðrÞÞa 0 for all r. Then multiplying the PDE version of our equation (2.3)

by u and integrating over the unit ball, we obtain a contradiction. It follows

that

jð0Þ ¼ 2f ð0; uð0ÞÞ
ðp� 1Þbð0Þu pð0Þ > 0:

Since jðrÞ tends to �y near r ¼ 1, it follows that jðrÞ changes sign exactly once

on ð0; 1Þ, say at r ¼ r. Clearly, jðrÞ > 0 for r A ½0; rÞ, and jðrÞ < 0 for r A ðr; 1Þ.
The sign of the test function vðrÞ is governed by the function m ¼

hðrÞ1 �rur
u

. Indeed, vðrÞ > 0 ð<0Þ, provided m > hðrÞ ðm < hðrÞÞ. We wish to

show that hðrÞ is an increasing function. Compute

h 0 ¼ ðn� 2Þuur þ ru2r þ ruf ðr; uÞ
u2

¼ 2H

u2
þ r

uf ðuÞ � 2Fðr; uÞ
u2

;ð2:12Þ

where we denote HðrÞ ¼ ð1=2Þru2r þ ð1=2Þðn� 2Þuur þ rFðr; uÞ, and Fðr; uÞ ¼Ð u

0 f ðr; tÞdt. The idea of introducing the function HðrÞ in a similar context is

due to T. Ouyang and J. Shi [10]. One verifies that HðrÞ satisfies

H 0 þ n� 1

r
H ¼ nF � n� 2

2
uf ðuÞ þ rFrðr; uÞ1GðrÞ Hð0Þ ¼ 0:ð2:13Þ

Observe that GðrÞ ¼ �AðrÞu2 þ BðrÞu pþ1, where

AðrÞ ¼ aðrÞ þ 1

2
ra 0ðrÞ > 0;ð2:14Þ

BðrÞ ¼ bðrÞ n

pþ 1
� n� 2

2

� �
þ r

b 0ðrÞ
pþ 1

:

Philip Korman102



Our conditions imply that AðrÞ is positive and increasing, while BðrÞ is

decreasing on ð0; 1Þ. (Observe that n=ðpþ 1Þ � ðn� 2Þ=2 > 0 for subcritical p.)

Near r ¼ 1 the function GðrÞ is negative, since its first term dominates.

We claim that either GðrÞ < 0 for all r A ð0; 1Þ or GðrÞ changes its sign exactly

once on ð0; 1Þ, with Gð0Þ > 0. Since BðrÞ is decreasing, and Bð0Þ > 0, it

follows that either BðrÞ > 0 for all r A ð0; 1Þ, or there is an ~rr A ð0; 1Þ, so that

BðrÞ > 0 on ½0; ~rrÞ, and BðrÞ < 0 on ð~rr; 1�. Let us assume first that BðrÞ > 0 for

all r. Setting GðrÞ to zero, we rewrite it in the form

u p�1 ¼ AðrÞ
BðrÞ :ð2:15Þ

On the left in (2.15) we have a decreasing function, and an increasing one

on the right, and also 0 ¼ u p�1ð1Þ < Að1Þ=Bð1Þ. Hence, either u p�1ðrÞ <
AðrÞ=BðrÞ for all r A ð0; 1Þ, which implies that GðrÞ < 0 for all r A ð0; 1Þ, or else

(2.15) has exactly one solution, i.e. GðrÞ changes its sign exactly once on ð0; 1Þ.
Turning to the second case, when BðrÞ changes sign at ~rr, we observe that GðrÞ is
negative on ½~rr; 1Þ, while on ð0; ~rrÞ the equation (2.15) has either one solution, or

no solution, so that we can proceed as before to prove the claim.

Next we show that

HðrÞ > 0 for all r A ð0; 1�:ð2:16Þ

Observe that Hð1Þ ¼ ð1=2Þu 02ð1Þ > 0. Consider first the case when GðrÞ < 0 for

all r A ð0; 1�. We multiply (2.13) by rn�1 and integrate

Hð1Þ � rn�1HðrÞ ¼
ð1

r

rn�1GðrÞdr < 0;

and (2.16) follows. The other possibility is that GðrÞ > 0 on ½0; r̂rÞ, and

GðrÞ < 0 on ðr̂r; 1�, for some r̂r A ð0; 1Þ. Then HðrÞ > 0 on ðr̂r; 1�, as before. If

HðrÞ were to become negative somewhere on ½0; r̂rÞ, it would have to achieve

negative minimum at some r0 A ð0; r̂rÞ, since Hð0Þ ¼ 0. At r0 we have a

contradiction in (2.13), since the quantity on the left is negative, and the one on

the right is positive.

Since uf ðuÞ � 2F ðuÞ ¼ ð1� 2=ðpþ 1ÞÞbu pþ1 > 0, it follows from (2.12) that

hðrÞ is an increasing function. Recall that jðrÞ was a decreasing function.

Since 0 ¼ hð0Þ < jð0Þ, and the order is reversed near r ¼ 1 (where hðrÞ tends

to infinity), it follows that hðrÞ and jðrÞ intersect exactly once, at some r1. Let

m1 ¼ hðr1Þ ¼ jðr1Þ, and we now fix our test function vðrÞ ¼ rur þ m1u.

On ð0; r1Þ we have v > 0, while Lv < 0. On ðr1; 1Þ it is v < 0, while

Lv > 0. By Lemma 2.2 we see that wðrÞ is of one sign, since it cannot vanish

on either ð0; r1� or ½r1; 1Þ. Since ufu � f > 0, it is well-known that wðrÞ cannot
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remain positive (or just use a test function v ¼ u and Lemma 2.2). We

conclude that w is identically zero. U

We shall also need a limiting case of the preceeding lemma.

Lemma 2.3. Assume that aðrÞ ¼ 0 for all r A ½0; 1Þ, while bðrÞ satisfies the

conditions (2.4) and (2.5). Then the problem (2.7) admits only the trivial solution

w1 0.

Proof. The proof is similar to that of Lemma 2.2 above, so that we only

sketch the argument. We use the same test function vðrÞ ¼ rur þ mu, and define

jðrÞ and hðrÞ the same way. This time jðrÞ ¼ ð1=ðp� 1ÞÞð2þ rb 0=bÞ, which is a

decreasing function by our assumptions. In (2.12) uf ðuÞ � 2FðuÞ is the same

expression as before, and hence positive. This time GðrÞ ¼ BðrÞu pþ1, with the

same BðrÞ as in (2.14). We see that Bð0Þ > 0, while BðrÞ is a decreasing

function. So that there are two cases to consider.

Case (i). BðrÞ > 0 for all r A ð0; 1Þ. Then from (2.13)

rn�1HðrÞ ¼
ð r

0

xn�1BðxÞu pþ1ðxÞdx > 0;

i.e. HðrÞ > 0 for all r A ð0; 1Þ.

Case (ii). BðrÞ, and hence GðrÞ changes sign exactly once on ð0; 1Þ. Then

we prove that HðrÞ > 0 for all r A ð0; 1Þ exactly as before.

We conclude from (2.12) that hðrÞ is an increasing function, and complete

the proof exactly as before. U

3. Existence and uniqueness of solutions

We can now prove our main result.

Theorem 3.1. Assume the conditions (2.4) and (2.5) hold. Then for any

lb 0 the problem (1.1) has a unique positive solution. Moreover, all positive

solutions of (1.1) are non-degenerate, of Morse index equal to one, and they lie on

a unique smooth curve of solutions.

Proof. We begin by proving the theorem in the case l ¼ 0. We claim

that the problem

Duþ bðrÞu p ¼ 0; r A ð0; 1Þ; u ¼ 0 for r ¼ 1ð3:1Þ

has a unique positive solution. In case bðrÞ is a constant, existence and

uniqueness of positive solution is well-known, see e.g. [4]. Moreover, the

Morse index of the solution is equal to one. This is known in general for the

solutions of the mountain-pass type, see e.g. K. C. Chang [1], or a simple proof
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for this particular case can be found in [4]. We now embed (3.1) into a family

of problems

Duþ ½nbðrÞ þ ð1� nÞbð1Þ�u p ¼ 0; r A ð0; 1Þ; u ¼ 0 for r ¼ 1;ð3:2Þ

depending on a parameter n, 0a na 1. As we vary n, we can apply the

implicit function theorem to continue the solution, since by Lemma 2.3 all

solutions of (3.2) are non-degenerate. By the a priori estimates of B. Gidas and

J. Spruck [3] the solutions stay bounded, and hence they can be continued for

all n. At n ¼ 1 we conclude existence and uniqueness of positive solutions for

our problem (1.1) at l ¼ 0. (If there were more than one solution at n ¼ 1, we

would have more than one solution at n ¼ 0, a contradiction.) Moreover, the

Morse index of this solution is one, since eigenvalues of the linearized problem

for (1.1) change continuously, and they cannot cross zero, since all solutions are

non-degenerate (and so the number of negative eigenvalues at n ¼ 0, is the same

as at n ¼ 1, i.e. one).

The proof of the theorem for any l > 0 follows essentially the same

argument. By Lemma 2.2 and the a priori estimates of B. Gidas and J. Spruck

[3], we can continue our solution for all l (starting at l ¼ 0). If there were

more than one solution at some l > 0, we could continue it back for decreasing

l, and obtain more than one solution at l ¼ 0, contradicting the uniqueness at

l ¼ 0, that we have just proved. U

4. A case of positive coe‰cient in the linear term

In this section we consider positive radial solutions of

Duþ laðjxjÞuþ u p ¼ 0 r A ð0; 1Þ; u ¼ 0 when r ¼ 1;ð4:1Þ

i.e. we shall again be looking at the problem (2.3) and the corresponding

linearized problem (2.7), this time with f ðr; uÞ ¼ aðrÞuþ u p, where the given

function aðrÞ is continuously di¤erentiable and positive. After some prelimi-

nary results (which we present in more generality than is needed for this

section), we prove existence of a curve of non-degenerate solutions.

The following two formulas are straightforward modifications of the

corresponding results for the autonomous case from [6] and [10].

Lemma 4.1. Let uðrÞ be a degenerate positive solution of (2.3), and wðrÞ the
corresponding solution of the linearized problem (2.7). Then

ð1

0

f ðr; uÞwrn�1 drþ 1

2

ð1

0

frðr; uÞwrn dr ¼
1

2
u 0ð1Þw 0ð1Þ;ð4:2Þ

ð1

0

f ðr; uÞwrn�1 dr ¼
ð1

0

ufuðr; uÞurn�1 dr:ð4:3Þ
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Proof. The function vðrÞ ¼ ru 0ðrÞ � u 0ð1Þ satisfies

v 00 þ n� 1

r
v 0 þ fuðr; uÞv ¼ �2f ðuÞ � fuðr; uÞu 0ð1Þ � rfrðr; uÞð4:4Þ

if r < 1; v ¼ 0 for r ¼ 1:

Combining (4.4) with the linearized problem

w 00 þ n� 1

r
w 0 þ fuðr; uÞw ¼ 0 if r < 1; w ¼ 0 for r ¼ 1;ð4:5Þ

we have

ð1

0

f ðr; uÞwrn�1 drþ 1

2

ð1

0

frðr; uÞwrn drð4:6Þ

¼ � 1

2
u 0ð1Þ

ð1

0

fuðr; uÞwrn�1 dr:

Integrating the equation in (4.5)

ð1

0

fuðr; uÞwrn�1 dr ¼ �w 0ð1Þ:ð4:7Þ

Combining (4.6) and (4.7), we have (4.2).

Turning to the second part, we observe that uðrÞ satisfies

u 00 þ n� 1

r
u 0 þ fuðr; uÞu ¼ fuðr; uÞu� f ðr; uÞ;ð4:8Þ

if r < 1; u ¼ 0 for r ¼ 1:

Combining (4.8) with (4.6), we conclude (4.3). U

Recall that we have defined Fðr; uÞ ¼
Ð u

0 f ðr; tÞdt.

Lemma 4.2. Any solution of (2.3) satisfies

ð1

0

nF � n� 2

2
uf ðuÞ

� �
rn�1 drþ

ð1

0

Frðr; uÞrn dr ¼
1

2
u 02ð1Þ:ð4:9Þ

Proof. Just integrate (2.13). U

The following is the crucial lemma. It is based on J. Shi [11], see also

P. N. Srikanth [12]. We present it in a more general form than is necessary

here. Notice that we allow two sets of conditions, with the second one given in

brackets.
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Lemma 4.3. Let uðrÞ be a degenerate positive solution of (2.3), and wðrÞ
the corresponding solution of the linearized problem (2.7). Assume that for some

g > 1, and for all r A ½0; 1Þ and u > 0, the following inequalities hold

frðr; uÞa 0 ðb0Þ;ð4:10Þ

ufuðr; uÞ � f ðr; uÞ > 0;ð4:11Þ

ufuðr; uÞ � gf ðr; uÞ > 0 ð<0Þ;ð4:12Þ

A1 ðg� 1Þ nF ðr; uÞ � n� 2

2
uf ðr; uÞ

� �
ð4:13Þ

þ ½ufuðr; uÞ � gf ðr; uÞ�u < 0 ð>0Þ;

1

2
ufrðr; uÞ � Frðr; uÞb 0 ða0Þ:ð4:14Þ

Then wðrÞ cannot vanish exactly once inside ð0; 1Þ.

Proof. Assume on the contrary that wðrÞ vanishes exactly once at some

x A ð0; 1Þ, i.e. we may assume that w < 0 on ½0; xÞ, and w > 0 on ðx; 1Þ. By

scaling w, we may achieve

wðrÞ < uðrÞ for all r A ½0; 1Þ:ð4:15Þ

Now, if we scale wðrÞ up, i.e. consider bw, with b > 1, we will have the

inequality (4.15) violated, provided we choose b large enough. Let b0 be

supremum of b’s for which the inequality (4.15) holds, and let us consider the

corresponding solution of the linearized equation b0wðrÞ, which we shall still

denote by wðrÞ. There are two possibilities to consider.

Case (i). There is an h A ðx; 1Þ so that wðhÞ ¼ uðhÞ, while wðrÞa uðrÞ
for all r A ½0; 1Þ. We use a test function vðrÞ ¼ wðrÞ � uðrÞ. With L½v� as

defined by (2.7), we have

L½v� ¼ �L½u� ¼ �ðufuðr; uÞ � f ðr; uÞÞ < 0ð4:16Þ

by our assumption (4.11). On the interval ðx; 1Þ we have va 0, L½v� < 0, and

vðxÞ ¼ vð1Þ ¼ 0. It follows by Lemma 2.1 that v oscillates slower than w on

this interval, and hence wðrÞ must vanish on ðx; 1Þ, a contradiction.

Case (ii). w 0ð1Þ ¼ u 0ð1Þ, while wðrÞ < uðrÞ for all r A ½0; 1Þ. Then the right

hand sides in (4.2) and (4.9) are equal. Subtracting these equations,

ð1

0

fwrn�1 drþ
ð1

0

1

2
frw� Fr

� �
rn dr�

ð 1

0

nF � n� 2

2
uf

� �
rn�1 dr ¼ 0:ð4:17Þ
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Using (4.3), we rewrite this as

ð 1

0

ufuwr
n�1 drþ

ð1

0

1

2
frw� Fr

� �
rn dr�

ð1

0

nF � n� 2

2
uf

� �
rn�1 dr ¼ 0:ð4:18Þ

From (4.18) we subtract (4.17) times g > 1,

ð1

0

ðufu � gf Þwrn�1 drþ ðg� 1Þ
ð1

0

nF � n� 2

2
uf

� �
rn�1 drð4:19Þ

þ ð1� gÞ
ð1

0

1

2
frw� Fr

� �
rn dr ¼ 0:

Assume for definiteness that the first set of conditions hold. Using our

conditions (4.10) and (4.11), and the inequality (4.15), we conclude from (4.19)

ð1

0

Arn�1 drþ ð1� gÞ
ð1

0

1

2
fru� Fr

� �
rn dr > 0;ð4:20Þ

which is a contradiction, since by our assumptions (4.13) and (4.14) the left

hand side is non-positive. U

Theorem 4.1. Consider the problem (4.1), with 1 < p < ðnþ 2Þ=ðn� 2Þ, and
where aðrÞ A C1½0; 1ÞVC½0; 1� satisfies

aðrÞ > 0; a 0ðrÞb 0; for r A ½0; 1Þ:ð4:21Þ

Then the problem (4.1) has a smooth curve of positive radial solutions for all

lb 0. This curve admits no turns, and the Morse index of any solution on this

curve is one.

Proof. As we mentioned previously, at l ¼ 0 the problem has a positive

solution of Morse index one. We now continue this solution for l > 0 using

the implicit function theorem in the space of radially symmetric functions of

class C2, until we reach a degenerate solution, at which the linearized problem

(2.7) has a non-trivial solution wðrÞ. Since eigenvalues change continuously,

m ¼ 0 is either first or second eigenvalue of the linearized eigenvalue problem

w 00 þ n� 1

r
w 0 þ laðrÞwþ pu p�1wþ mw ¼ 0 r A ð0; 1Þ; w ¼ 0 when r ¼ 1;

and wðrÞ is the corresponding eigenfunction. One checks that the Lemma 4.3

applies (the second set, with g ¼ p), and hence wðrÞ cannot vanish exactly once,

and hence it cannot be the second eigenfunction. Since ufu � f > 0 it is well

known that wðrÞ cannot be positive either. Hence degenerate solution is never

encountered, and we can continue the solution curve for all l > 0 as in the

Theorem 3.1. U
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The theorem does not allow us to conclude uniqueness of solutions, but

we can say that any other solution (not on the curve just described) would

have to be of Morse index two or higher. Non-radial positive solutions are

also possible in this case. In the next section we present an uniqueness result

for (4.1), under a di¤erent set of conditions.

5. Positivity for the linearized problem

We present a general result on the positivity of solutions for the linearized

problem 2.7, and then apply it to prove uniqueness for the problem (4.1).

Lemma 5.1. Let uðrÞ be a degenerate positive solution of (2.3), and assume

that the following conditions are satisfied for all r A ½0; 1Þ and ub 0

f ðr; 0Þ ¼ 0; frðr; uÞa 0; frrðr; uÞa 0; fruðr; uÞa 0; fuðr; uÞ > 0;ð5:1Þ

B1 fr fu � ffru a 0;ð5:2Þ

C1 2f 2
u � nffuu þ rð fru fu � fuu frÞ > 0:ð5:3Þ

Then any non-trivial solution of the linearized problem (2.7) is of one sign.

Proof. This time we will use the test function v ¼ ru 0 þ ðn� 2Þuþ a, with

a constant a to be specified. Compute

L½v� ¼ ðn� 2Þufu � nf � rfr þ afu 1 gaðuÞ:ð5:4Þ

The sign of the test function vðrÞ is governed by the function a ¼ hðrÞ1
�ru 0 � ðn� 2Þu. Indeed, v > 0 ð<0Þ when hðrÞ < a ð>aÞ. Similarly, the sign

of gaðuÞ is governed by a ¼ jðrÞ1 �ðn�2Þufuþnfþrfr
fu

. Indeed, L½v� > 0 ð<0Þ when

jðrÞ < a ð>aÞ. Write jðrÞ ¼ j1ðrÞ þ j2ðrÞ, where we denote j1ðrÞ ¼ rfr
fu

and

j2ðrÞ ¼ �ðn�2Þufuþnf
fu

. In view of our conditions

j 01ðrÞ ¼
ð fr þ rfrr þ rfruu

0Þ fu � rfrð fru þ fuuu
0Þ

f 2u
ð5:5Þ

< ru 0 fru fu � fuu fr

f 2u
;

for all r A ð0; 1Þ. We also have

j 02ðrÞ ¼
ð2f 2

u � nffuuÞu 0 þ nB

f 2u
<

2f 2u � nffuu

f 2u
u 0:ð5:6Þ

Combining (5.5) and (5.6), we see that

j 0ðrÞ < C

f 2u
u 0 < 0;
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for all r A ð0; 1Þ, and so jðrÞ is a decreasing function. Since h 0ðrÞ ¼ rf > 0

the function hðrÞ is increasing for all r A ð0; 1Þ. (Observe that our conditions

imply that f ðr; uÞ > 0.) We now consider two cases.

Case (i). jð0Þ > hð0Þ. Since jð1Þ < 0, while hð1Þ > 0, it follows that the

functions hðrÞ and jðrÞ have a unique point of intersection, call it r. We now

fix a ¼ hðrÞ. Then on ð0; rÞ we have v > 0 and L½v� < 0, while the opposite

inequalities hold on ðr; 1Þ. It follows that wðrÞ cannot vanish.

Case (ii). jð0Þa hð0Þ. This time we fix a ¼ hð0Þ. We have v < 0 and

L½v� > 0 on the entire interval ð0; 1Þ. Again, wðrÞ cannot vanish. U

We now return to the problem (4.1).

Theorem 5.1. Assume that aðrÞ A C2½0; 1Þ is a positive function, and the

following conditions hold

1 < pa
n

n� 2
; for nb 3; 1 < p < y for n ¼ 1; 2;ð5:7Þ

a 0ðrÞa 0; and a 00ðrÞa 0 for all r A ð0; 1Þ;

ðr2aðrÞÞ0 > 0; for all r A ð0; 1Þ;

½4� nðp� 1Þ�aðrÞ þ ð2� pÞra 0ðrÞ > 0:

Then for any lb 0 the problem (4.1) has a unique positive solution. Moreover,

all solutions of (4.1) are non-degenerate of Morse index equal to one, and they lie

on a unique smooth curve of solutions.

Proof. One checks that the Lemma 5.1 applies here, implying that any

non-trivial solution of the linearized problem is of one sign. Since here

ufu � f > 0, it follows that any solution of the linearized problem (2.7) must

vanish on ð0; 1Þ, and hence (2.7) can have only the trivial solution, i.e. any

solution of (4.1) is non-degenerate. Similarly to the Theorem 4.1, we obtain a

curve of positive solutions. This curve of solutions exhausts the solution

set. Indeed, any other solution could be continued for decreasing l, contra-

dicting the uniquenes of solution at l ¼ 0. U

Remarks.

1. It is straightforward to give a similar uniqueness result in case f ðr; uÞ ¼
aðrÞuq þ bðrÞu p, with 1 < q < p < n=ðn� 2Þ, and b 0ðrÞa 0.

2. M. K. Kwong and Y. Li [8] have proved uniqueness, assuming that

1 < pa ðnþ 2Þ=ðn� 2Þ and the function rbaðrÞ is non-decreasing,

where b ¼ 2ðn� 1Þðp� 1Þ=ðpþ 3Þ. Clearly, we have several extra

restrictions. But since b < 2 for nb 4, our third condition is less
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restrictive for di¤erentiable aðrÞ, thus providing an extension for all

nb 4. Notice that our result provides some extra information, and

it appears easier to extend to other equations, as in the preceeding

remark.
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