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Abstract

When one solves numerically the Gelfand boundary value problem in two dimen-
sions (with u = u(x,y), r = \/x*> + »* and 1 a positive parameter)

Au+ 2t =0 for r<1, u=0 when r=R.

with 10 mesh points, two spurious turns appear on the solution curve. When one in-
creases the number of mesh points, the spurious turns persist, occurring at smaller
values of A. It turns out that spurious turns are avoided in the other direction, by using
two to six mesh points. We prove this in case of two mesh points. This gives us the
correct form of the solution curve, and the accuracy can then be improved by using a
linear search on %(0), combined with shooting.
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1. Introduction

One common way to numerically approximate solutions of a nonlinear
boundary value problem is to use finite differences approximation. The re-
sulting system of nonlinear algebraic equations can be solved by e.g. Newton’s
method, providing an approximation of solution at mesh points. It is then
natural to expect that solution of the difference equation approaches the
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desired solution of the differential equation, as one decreases the mesh size.
However it has been known for some time that the difference approximations
tend to have more solutions than the differential equations that they came
from, see e.g. [1] or [11] for some of the early references, or a recent paper of
McGough [8] (which studies the Gelfand problem in three dimensions). In
particular, some solutions of the difference approximations do not correspond
to any solutions of the corresponding differential equations. These are so-called
spurious solutions. Decreasing the step size will eliminate the spurious solutions
at a given value of the parameter, but they may persist at some other values of
the parameter, preventing an accurate computation of the entire solution
curve. We will be mostly concerned with solving the Gelfand boundary value
problem in two dimensions (with u = u(x,y), r = /x* + 3?)

Au+le" =0 for r<1, u=0 when r=R. )

This much studied problem comes up in the theory of combustion, see e.g. [2].
Here A is a positive parameter. Observe that by maximum principle any so-
lution of (1) is positive, and then by the theorem of Gidas et al. [7] any solution
is radially symmetric, i.e. u = u(r), and it satisfies

1
u” +;u’ + 2" =0, when e (0,R), ¥'(0)=u(R)=0. (2)

Moreover, it follows from [7] that #/(r) < 0 for all » € (0,R]. It is also known
that the maximum value u(0) uniquely determines the solution (4,u(r)) of (2),
see e.g. [3]. We can therefore represent the solutions of (2) as curves in (4, #(0))
plane. The problem (2) has been completely analyzed for all space dimensions
by Joseph and Lundgren [5] (see also [2] for a nice exposition). It turns out that
all solutions lie on a unique curve in (4,u(0)) plane. In two dimensions this
curve starts at (0,0) then bends back at Ay = 2, and then continues without any
turns with #(0) — co as A — 0. When we solved the problem numerically for
R =1 using 10 mesh points (see below the details of our implementation), the
solution curve indeed made a turn at Ag = 2, but then it made two extra turns
at 4; = 0.19 and 4, = 0.229, see Fig. 1. When we increased the number of mesh
points, the solution curve still had two extra turns, with the corresponding
values of A; and A, getting smaller. It turns out that the way to get rid of the
spurious turns is in the opposite direction: decreasing the number of mesh
points. We prove that for two mesh points no spurious turns occur. Our nu-
merical experiments show that there are still no spurious turns for < 6 mesh
points, see Fig. 2 where solution of (2) is computed with five mesh points. This
leads to the following strategy for solving the problem (2). Solve the problem
(2) with a small number of mesh points. Then there are no spurious turns, and
we obtain reasonably accurate values of u(0) for all 2 > 0. It is then easy to
improve the values of u(0), by using linear search on u(0), coupled with the
computation of the entire solution. To obtain the solution, one needs to solve
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Fig. 1. Two spurious turns.

ufo]

14 +

12

Fig. 2. Solution curve with five mesh points.

an initial value problem, starting at » = 0, for which standard (fast and accu-
rate) algorithms are available, e.g. Runge-Kutta.

In Section 3, following Govaerts [4], we show that for the one-dimensional
version of the problem (1) spurious symmetry breaking occurs even in case of
two mesh points.

We wish to mention that Mickens had studied extensively the ways to avoid
spurious solutions by using nonstandard finite difference schemes, see e.g. [9].
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2. Numerical implementation and the two-point scheme

We now describe the numerical approximation of (2). We divide the interval
[0, R] into n equal pieces of length # = R/n each, with r; = ik, i =0,1,...,n. We
shall denote by u; the numerical approximation of u(r;). To approximate the
Neumann condition at » = 0 it is customary to introduce a fictitious mesh point
r_y = —h, with u_; the fictitious value at »_;, and then write the equation (2) at
the boundary point » = 0, in order to exclude r_j, see e.g. [12]. Letting » — 0,
and using that im, o/ (r)/r = u”(0), we conclude that

2u"(0) + 2@ = 0. (3)
Using the standard central difference approximation, we replace (3) by

Uy — 2up -+ g
h2

Since /(0) = 0, we conclude that u_; = u;, and hence (4) takes the form

2 + e = 0. )

duy — dug + W™ = 0. (5)

For other mesh points x;, with i = 1,2,...,n— 1, we use the standard central
difference approximation

Uil — 20+ w1 Loy —ug w
P + 7 o + Ae¥ = 0. (6)
This is a system of n algebraic equations for (ug,u, . ..,u,-1), which we solved

as a function of 1 > 0 by the predictor—corrector method, using the Newton’s
method with 4-6 steps as a corrector. As we mentioned above, this imple-
mentation results in two spurious turns of the solution curve for all # > 10 that
we tried.

We now completely analyze the n =2 case. The second equation is then
(here i =1, and u; = 0)

%Uo — 2uy + AWPe" = 0. (7
Setting u = Ah? > 0, we solve (5) and (7) as a 2 x 2 system

— dug + 4u; + pe” =0

1

Euo - 2u; + pe =0,

We are looking for positive solution of (8), (ug,u;) > 0.

Theorem 1. For any positive u > 0 the problem (8) has at most two positive
solutions.
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Proof. Solving for u; from the first equation in (8), and using that in the second
one, we obtain

2

Set g(x) = (3/2)x — (1/2)e* — pe*#". We will show that g”(x) < 0 for allx > 0,
and the proof will follow, since a concave function can have at most two roots.
Compute

My
~up —ge"’o — e F = 0.

B 2
g'(x) = -%e" — petE [(1 — %e") - %e’“}

Setting ¢ = ue* > 0, we see that the quantity in the square bracket
1 3 1
¢(1):§+€ (1_Zt+ﬁt2)>o for all # > 0.

Indeed, the critical points of ¢(¢) turn outto be at t =4 and 1 = 16, with t =4

being the point of absolute minimum on [0, cc), and the minimum value is
p4)=1-e'>0. O

Remark. We used in an essential way the particular form of our nonlinearity

f(u) = e*. We expect a similar result to hold for many convex f (), but cannot
prove that.

3. Spurious symmetry breaking in one dimension

We now consider the problem (1) in one space dimension. We assume that
u = u(x) is a positive solution of

' + " =0 for xe (0,1), u(0)=u(l)=0. 9)

As mentioned above, the positive solutions of (9) are symmetric about x = 1/2,
the mid-point of the interval. However, even with two mesh points spurious
symmetry breaking occurs. This result is due to Govaerts [4]. We present here a
different exposition, which is more in line with the bifurcation theory analysis,
that was used extensively in recent years by Li, Ouyang, Shi and the present
author, see e.g. [6,10], and which appears to be a little easier. Crucial to the
bifurcation theory analysis is consideration of the linearized problem for (9)

w4+ defw =0, forxe(0,1), w(0)=w(l)=0. (10)
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Letting & = 1/3, we introduce two interior mesh points x; = 1/3, x, = 2/3 and
denote by u;, uy the numerical approximations of #(x;) and u(x,) respectively.
Then the problem (9) is approximated by the algebraic system

—2uy +uy + KM =0,
. (1)
Uy — 2up + hle”? = 0.

Since by the symmetry u; = u, = u, (11) is equivalent to a single equation
u=nJe" = p. (12)

Clearly there exists a critical 4 = A, so that the Eq. (12) has either two, one or
no solution when A < Ay, = Ao or 4 > g respectively. This mirrors precisely
the solution set of the original problem (9). We now discretize the linearized
equation (10). Using that A2le" = h*Ae"2 = h%le* = u, we have

— 2wy +wy + uw; =0, (13)
Wy — 2W2 +/JW2 =0.

The linear system (13) will have nontrivial solutions, provided its determinant
is zero. This happens at u =1, i.e. when (u = 1,1 = (1/h?)e™! =9¢7!), and at
p = 3, which corresponds to (u = 3,4 = (3/h*)e™® = 27¢73). At u=1 the so-
lution set of (13) is spanned by (w; = 1, w, = 1), while at u = 3 the solution set
of (13) is spanned by (wy = 1,w, = —1). It is then not hard to show that at (z =
1,A=9e7!) a simple turn occurs, while further along the solution curve at
(u = 3,4 =27¢7%) there is a symmetry breaking bifurcation, see [4].

Remark. Symmetry breaking numerical solutions are of course spurious solu-
tions, since all solutions of the original problem (9) are symmetric. However,
these spurious solutions do not represent a serious computational challenge
(unlike the spurious turns from the previous section), since a good path fol-
lowing algorithm will stay on the curve of symmetric solutions. Moreover,
symmetry can be “forced” for the numerical solution. For example, in case of
two mesh points we can replace the system (11) by a single equation (12).
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