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Abstract

A study of the convergence behavior of the static localized nonlinear approximation intro-
duced by Habashy, Groom, and Spies [3] is furnished for a specific case of the time-harmonic
Maxwell equations. Some asymptotics are used to explain the robustness of this scheme in the
high conductivity case.

1. Introduction:

We will study the static localized nonlinear(SLN) approximation introduced in [3] applied to the
nondimensionalized time-harmonic Maxwell equations,

∇× E − iγH = −Ms and ∇× H − γσE = 0 in R3 (1)

where

σ(x) =

{
σs/σb if x ∈ Ω
1 if x ∈ R3 − Ω.

The set Ω is the nondimensionalized domain which represents the scatterer and γ is a parameter
which we will assume satisfies 0 < γ < 1. The positive constants σs and σb are conductivities in
the scatterer and background, respectively. The functions E and H are the rescaled electric and
magnetic fields, respectively, and Ms is the magnetic source.

As in Habashy et al [3] we will focus on the case where the scatterer Ω is a simple closed region,
there is a source (transmitter) outside of Ω so Ms is a vector multiple of the delta function, and we
are interested in the accuracy of our approximation at some point (receiver) outside of Ω.

∗Research supported in part by the Taft Foundation at the University of Cincinnati through their Grants-in-Aid
program and the Institute for Mathematics and its Applications at the University of Minnesota during French’s
sabbatical year, 1997-8.
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It can be shown that the magnetic field satisfies the following integral equation

H(x) = Hb(x) + γ∇x ×
∫

Ω
g(x, y)q(y)E(y)dy (2)

where

g(x, y) :=
eiγζ|x−y|

4π|x− y|

with ζ = (1 + i)/
√

2. The function q = σ − 1. The function Hb is the background magnetic field
and is assumed to be given in this situation. The well known Born approximation which we will
also consider is formed by substituting the given background electric field Eb in the right side for
E;

HB(x) = Hb(x) + γ∇x ×
∫

Ω
g(x, y)q(y)Eb(y)dy. (3)

The SLN approximation has the form

HSLN (x) = Hb(x) + γ∇x ×
∫

Ω
g(x, y)q(y)Γ0Eb(y)dy

where
Γ0 :=

3σb

2σb + σs
I

A discussion of the motivation for this new approximation is given in section 3.
The paper [3] which introduces the SLN approximation also provides computational results in

the case Ω is a sphere and Ms is a delta function. These numerics give evidence that the SLN
and Born approximations are accurate if σs/σb, ω, and D are of moderate size and the parameters
ρR = dist(xR, Ω) and ρT = dist(xT , Ω) are large (ρR > 1 and ρT > 1) where xR and xT are the
receiver and transmitter locations, respectively. The computations also indicate that when the
contrast σs/σb is large the Born approximation fails while the SLN remains reasonably accurate.
Our results in this paper support these conclusions and provide some theoretical reasons for these
observations. Note that throughout this paper C will represent an O(1) positive constant.

We now give a brief outline and summarize our main results. In section 2 we describe the
nondimensionalization and give sample values for the various parameters. In section 3 a derivation
of the SLN approximation is presented. Section 4 contains some basic a priori estimates on the
L2-norm of the scattered E-field. In section 5 we show the following:

|(H − HB)(xR)| ≤ CQγρ−1
R ρ−1

T and |(H − HSLN )(xR)| ≤ CQγρ−1
R ρ−1

T (4)

where Q = q|Ω = (σs − σb)/σb. Both of these upper bounds “blow up” as Q → ∞. This is an
appropriate portrayal of the behavior of the Born approximation (see [3]). The SLN approximation,
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however, is more robust. In section 6 we give a nonrigorous asymptotic argument that E → 0 as
Q → ∞ in the scatterer and this allows us to argue, in section 7, that

|(H − HSLN )(xR)| ≤ Cρ−1
R ρ−1

T (5)

when Q is large which is our other main result.
Acknowledgement: The first author is grateful to Fadil Santosa and Bernardo Cockburn for
introducing him to this problem. The problem originated in a meeting involving Cockburn, Santosa,
and T.M. Habashy at Schlumberger-Doll Research.

2. Nondimensionalization:

The time harmonic Maxwell equations which we study, before nondimensionalization, are as follows

∇̃ × Ẽ − iωµbH̃ = −M̃s(x̃) in R3 (6)

∇̃ × H̃ − σ̃(x̃)Ẽ = 0 in R3 (7)

where Ẽ is the electric field, H̃ is the magnetic field, ω > 0 is the frequency, µb is the background
magnetic permittivity, M̃s is the impressed magnetic source, and we have set the background
electric permittivity equal to zero since it is typically negligibly small (εb = 8.854 × 10−12 f/m
where f = Farads and f/m = C2/(N m2)). The conductivity has the special form

σ̃(x̃) =

{
σs if x̃ ∈ Ω̃
σb if x̃ ∈ R3 − Ω̃.

where the constant σs > 0 is the conductivity in the scatterer which is the set Ω̃ that is a bounded
simply connected region with diameter D and a smooth boundary. The constant σb > 0 is the
constant background conductivity. Primarily for simplicity we will assume that σs ≥ σb. We
assume M̃s has compact support in R3 − Ω̃.

Below is a table with some specific values for the constants as suggested in [3].

Name Value Units
Frequency ω = 100 Hz Hz = s−1

Scatterer Diameter D = 30 m m = meters
Background Conductivity σb = 0.1 S/m S/m = C2/(N m2 s)
Background Permittivity µb = 1.2× 10−6 h/m h/m = (N s2)/(C2)

Electric Field Ec = 10−10 v/m v/m = N/C
Magnetic Field Hc = 3 × 10−9 a/m a/m = C/(ms)

Magnetic Source Ms,c = 3.3× 10−11 v/m2 v/m2 = N/(Cm)
Transmitter Location ρ̃T = 60 m m = meters

Receiver Location ρ̃R = 60 m m = meters

Variables and Units (C = Coulombs, s = seconds, N = Newtons, Hz = Hertz, S = Siemens, h = henrys, v
= volts, and a = amps ).
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Note that ρ̃R = dist(x̃R, Ω̃) and ρ̃T = dist(x̃T , Ω̃) where x̃R and x̃T are the receiver and transmitter
locations, respectively. We now make the following variable changes to simplify,

γ =
√

ωµbσbD, x̃ = Dx, Ẽ(x̃) = EcE(x),

M̃s(x̃) = Ms,c Ms(x), σ̃(x̃) = σb σ(x), and H̃(x̃) = Hc H(x)

where we relate
Hc = σbDγ−1Ec and Ec = DMs,c.

We also define
ρT = ρ̃T/D and ρR = ρ̃R/D.

Using these substitutions in (6)–(7) we obtain the equations (1). Note that γ = 0.104 so that our
assumption on the size of γ is satisfied.

Other forms of the Maxwell equations will be useful in our analysis. Taking the curl of one of
the equations and substituting in the other we obtain

∇×∇× E − iγ2σE = −∇ × Ms. (8)

∇×
(
σ−1∇× H

)
− iγ2H = γMs. (9)

We now split the fields into the background and scattered fields E = Eb + Es and H = Hb + Hs

where from (1) we have

∇× Eb − iγHb = −Ms and ∇× Hb − γEb = 0 in R3 (10)

and
∇× Es − iγHs = 0 and ∇× Hs − γσEs = γqEb in R3. (11)

Again taking the curl of one equation and substituting in the other we have

∇×∇× Es − iγ2σEs = iγ2qEb. (12)

∇×
(
σ−1∇× Hs

)
− iγ2Hs = γ∇×

(
q

σ
Eb

)
. (13)

For later use let Q = q |Ω = (σs − σb)/σb be the conductivity contrast.

3. The Born and Static Localized Nonlinear Approximations:

In this section we describe the well-known Born approximation and introduce the SLN approxima-
tion of [3]. To accomplish this we must describe the Green’s function representation of the electric
field solution of (12). The function g satisfies

∆yg(x, y) + iγ2g(x, y) = −δ(x − y)
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and from this (see Kong [5]) we find that

G(x, y) = (I + (iγ2)−1∇2
x)g(x, y) satisfies ∇y × ∇y × G − iγ2G = −δ(x − y)I.

It can be shown using the properties of g and G that

Es(x) = (iγ2I + ∇2
x)
∫

Ω
g(x, y)q(y)E(y)dy.

Then
E(x) = Eb(x) + (iγ2I + ∇2

x)
∫

Ω
g(x, y)q(y)E(y)dy. (14)

One can now derive (2) from the above and the Maxwell equations (1).
To introduce the new approximation from Habashy, Groom, and Spies we find, by rewriting

(14), that
E(x) = Eb(x) +

[
(iγ2I + ∇2

x)G(x)
]
E(x) + T (x) (15)

where
T (x) = (iγ2I + ∇2

x)
∫

Ω
g(x, y)q(y)(E(y)− E(x̄))dy

∣∣∣∣
x̄=x

,

and
G(x) =

∫

Ω
g(x, y)q(y)dy.

We then have
E = Γ(Eb + T ).

where
Γ−1(x) = I − (iγ2I + ∇2

x)G(x).

Substituting this expression for E in (2) we obtain

H = HLN + e

where HLN is the localized nonlinear approximation;

HLN(x) = Hb(x) + γ∇x ×
∫

Ω
g(x, y)q(y)Γ(y)Eb(y)dy;

and the error term is
e(x) = γ∇x ×

∫

Ω
g(x, y)q(y)Γ(y)T (y)dy.

The terminology is motivated by the localization that occurs in (15) and the fact that HLN is not
linear in q (since Γ depends on q) while the typical algorithms such as Born are linear in q.
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Finally, we define the SLN approximation. This is introduced in [3] by examining the Γ function
defined above in the case where γ is small. They find that Γ ∼= Γ0 and then define HSLN from the
above.

4. A Priori Estimate for E:

In this section we derive an L2-estimate for the scattered electric field where the bound depends
on the L2-norm of the background field Eb. This estimate will be useful in our error analysis.

Since the background conductivity is nonzero in all of R3 it follows that the solutions to our
problem will decay exponentially as |x| → ∞. This is clear from examining the Green’s function
formulations (see (14) and (2)). It is natural to require

[E × ν] = 0 and [H × ν] = 0 on ∂Ω (16)

where
[v] = v |Limit from inside Ω − v |Limit from outside Ω .

and ν is the outward pointing unit normal from Ω to ∂Ω. These conditions imply that the traces
of the tangential components of E and H are continuous. We assume that there exists a unique
solution consisting of E and H fields which satisfy the Maxwell equations, decay exponentially for
large |x| and satisfy the conditions (16) (see [1] for a proof of existence).

Complementary to the conditions (16) are the following conditions shown in [1] on the normal
components:

[σE · ν] = 0 and [H · ν] = 0 on ∂Ω. (17)

Note that the statements (16) and (17) apply to Es and Hs since the background fields are smooth
across ∂Ωγ . Also observe that (16) and (17) imply that H and Hs are continuous across ∂Ω.

We will need to evaluate the divergence of the E and H fields. If we compute this quantity in
Ω and R3 − Ω separately and note that ∇q(x) = 0 in these regions we have from (1)

∇ · Es(x) = 0 and ∇ · Hs(x) = 0 (18)

(Note that ∇ · Eb = 0).
The Green identity

∫

V
(∇× F ) · L dx =

∫

V
F · (∇× L) dx +

∫

∂V
(F × L) · ν ds, (19)

will allow us to derive a variational formula from which we can obtain the desired estimate. We
will use the arithmetic-geometric mean inequality,

ab ≤ βa2 +
1
4β

b2, (0 < β < 1). (20)
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We are now in a position to derive the estimate for Es. We first take the dot product of the
defining equation for Es, (12), with the conjugate Ēs, and apply (19) in Ω and R3 − Ω separately.
This yields
(∫

Ω
+
∫

R3\Ω

)
|∇ × Es|2 dx +

∫

∂Ω

[
∇× Es × Ēs · ν

]
ds − iγ2

∫

R3
σ|Es|2 dx = iγ2

∫

Ω
qEb · Ēs dx.

Since ∇× E is not defined on ∂Ω we must integrate it over Ω and R3 − Ω separately. For this we
use the more concise notation

(∫

Ω
+
∫

R3\Ω

)
fdx =

∫

Ω
fdx +

∫

R3−Ω
fdx.

Using (11) to rewrite the boundary term and the identity Hs × Ēs · ν = Ēs × ν · Hs. We have
(∫

Ω
+
∫

R3\Ω

)
|∇ × Es|2 dx − iγ2

∫

R3
σ|Es|2 dx + iγ

∫

∂Ω

[
Ēs × ν ·Hs

]
ds = iγ2

∫

Ω
qEb · Ēs dx.

The boundary term vanishes due to (16) and the fact that Hs is continuous across ∂Ω. Now, taking
real and imaginary parts and using (20) we obtain

(∫

Ω
+
∫

R3\Ω

)
|∇× Es|2 dx + γ2

∫

R3
σ|Es|2 dx = γ2

∫

Ω
q|Eb|2 dx. (21)

5. Estimates for the Born and SLN Approximations:

In this section we furnish the estimates (4) for the accuracy of the Born and SLN approximations
in the case when the constrast σs/σb is of moderate size. In this case we note that from (21) we
have

‖Es‖L2(Ω) ≤ ‖Eb‖L2(Ω) (22)

We assume that Eb on Ω satisfies the estimate

‖Eb‖L∞(Ω) ≤ Cρ−1
T . (23)

This is reasonable if, as in [3], we have Ms = δ(·−xT )Ub where Ub is a vector with |Ub| = O(1) and
then Eb = −∇g(·, xT) × Ub. It then follows that

Eb(x) =
−eiγζ|x−xT |

4π

(
iγζ

|x − xT |
− 1

|x − xT |2

)
x − xT

|x − xT |
× Ub

and thus for x ∈ Ω

|Eb(x)| ≤ 1
4π

(
γ

ρT
+

1
ρ2

T

)
|Ub|
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from which (23) follows, as a reasonable hypothesis, since γ < 1 and ρT ≥ 1. Observe that a similar
argument gives

|∇g(xR, y)| ≤ Cρ−1
R . (24)

for y ∈ Ω. We are now in a position to estimate the accuracy of the Born approximation. Sub-
tracting (3) from (2) and evaluating the resulting equation at x = xR we have

|(H − HB)(xR)| ≤ γQ

∣∣∣∣
∫

Ω
∇g(xR, y)× (E − Eb)(y)dy

∣∣∣∣ .

From the estimate (24) on |∇g| we have

|(H − HB)(xR)| ≤ CQγρ−1
R ‖Es‖L2(Ω)

and applying (22) we obtain

|(H − HB)(xR)| ≤ CQγρ−1
R ‖Eb‖L2(Ω) ≤ CQγρ−1

R ρ−1
T .

This gives the first part of (4). Note that the estimate “blows up” in the case when Q is large
which corresponds to the contrast σs/σb also being large.

The estimation of the accuracy of the SLN approximation is quite similar and leads to the same
result which is the second part of (4). Here we have

|(H − HSLN )(xR)| ≤ γQ

∣∣∣∣
∫

Ω
∇g(xR, y)× (E − Γ0Eb)(y)dy

∣∣∣∣

and the integrand can be decomposed as

E − Γ0Eb = Es + (I − Γ0)Eb.

Thus the estimate will involve two terms, the one with the scattered field which is essentially the
Born approximation error term and the second term will have the background field and the I − Γ0

factor. So

|(H − HSLN )(xR)| ≤ CQγρ−1
R

(
‖E‖L2(Ω) +

∣∣∣∣1 − 3σb

2σb + σs

∣∣∣∣ ‖Eb‖L2(Ω)

)

≤ CQγρ−1
R

(
1 +

∣∣∣∣
σs − σb

2σb + σs

∣∣∣∣
)
‖E‖L2(Ω)

From which the second part of (4) follows.

6. Perturbation Approximation of E for High Contrasts:

The numerical experiments in [3] (see figures 3 and 4 on pages 1765 and 1766) indicate that the SLN
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approximation is accurate in the high conductivity case when the Born approximation generally
fails. The key reason is that the tensors Γ and Γ0 tend to zero as Q → ∞ (this is noted in section
4.1 of [7]). In this section we focus on the behavior of the electric field near the boundary when
ε :=

√
σb/σs is small (equivalent to Q large since ε = (Q + 1)−1/2) and Ω is a sphere. We give a

non-rigorous asymptotic argument that E = 0 over most of the region occupied by the scatterer
with a thin layer near the boundary. We will also see that E = O(ε) on that boundary and decays
exponentially in the layer.

Let S denote the electric field inside the scatterer and B outside. From (8) and the identity

∇×∇× A = ∇(∇ · A) − ∆A. (25)

we have that
∆S + iε−2γ2S = 0 and ∇ · S = 0 in Ω, (26)

∆B + iγ2B = −∇ × Ms and ∇ · B = 0 in R3 \ Ω, (27)

and conditions
(S − B) × ν = 0 and (∇× (S − B)) × ν = 0 on ∂Ω (28)

B(x) → 0 as |x| → 0. (29)

We first determine the outer solution in the scatterer and thus look for S in the form

S = S0 + εS1 + . . . .

Substituting in (26) we obtain, after some rearrangement,

iε−2γ2S0 + iε−1γ2S1 + (∆S0 + iγ2S2) + ε(∆S1 + iγ2S3) + . . . = 0.

Setting the coefficients of the differing powers of ε on the left side to zero we find that S0 = S1 =
S2 = . . . = 0. So to match the B and S functions we develop a boundary layer solution.

We now change to spherical coordinates (r, θ, φ). Define η by the equation r = 1 − εη and
W (η, θ, φ) = S(r, θ, φ). The function W will provide the behavior of the electric field, S, near ∂Ω
in Ω. Since

∂S

∂r
= −1

ε

∂W

∂η

the Helmholz equation in (26) becomes

1
ε2

(
∂2W

∂η2
+ iγ2W

)
− 2

ε

[
∂

∂η

(
η
∂W

∂η

)
+ iηγ2W

]
+ O(1) = 0. (30)

From the divergence condition in (26) we have

−1
ε

∂Wr

∂η
+
[
2

∂

∂η
(ηWr) + ∇T · Wr

]
+ O(ε) = 0 (31)
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where

W =




Wr

Wθ

Wφ


 , WT =

(
Wθ

Wφ

)
,

and
∇T · AT =

1
sin θ

(
∂

∂θ
(sin θAθ) +

∂Aφ

∂θ

)
.

The first part of the boundary condition (28) implies that WT = BT while the second part gives

1
ε

∂

∂η




0
Wθ

Wφ


 +




0
Wθ − ∂Wr/∂θ

Wφ − (sin θ)−1∂Wr/∂φ


 + O(ε) =




0
Bθ − ∂Br/∂θ

Bφ − (sin θ)−1∂Br/∂φ


 (32)

at the boundary. Choosing
W = W 0 + εW 1 + . . .

we find from (30)–(32) that

1
ε2

(
∂2W 0

∂η2
+ iγ2W 0

)
+

1
ε

[
∂2W 1

∂η2
+ iγ2W 1 − 2

(
∂

∂η

(
η
∂W 0

∂η

)
+ iηγ2W 0

)]
+ O(1) = 0, (33)

−1
ε

∂W 0
r

∂η
+

[
−∂W 1

r

∂η
+ 2

∂

∂η

(
ηW 0

r

)
+ ∇T · W 0

r

]
+ O(ε) = 0, (34)

and at the boundary

∂

∂η

(
1
ε
W 0

T + W 1
T

)
+ W 0

T −
(

∂W 0
r /∂θ

(sin θ)−1∂W 0
r /∂φ

)
+ O(ε) = BT −

(
∂Br/∂θ

(sin θ)−1∂Br/∂φ

)
. (35)

We are now in a position to give a description of the zeroth order solution. From (34) we have that

∂W 0
r

∂η
≡ 0.

Since this implies ∂2W 0
r /∂η2 ≡ 0 we have from (33) that W 0

r ≡ 0. Also from (33) we can solve for
the leading order tangential terms and obtain

W 0
T (η, θ, φ) = A0

T (θ, φ)e−ζγη

where we dropped the growing exponential term to match the outer solution. Now from (35) we
can conclude −ζA0

T ≡ 0 so
W 0 ≡ 0.
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We now can provide a boundary condition for the B function from the first part of (28) since
S × ν = O(ε) and thus

B × ν ∼= 0. (36)

We now determine the first order solution. Substituting the zeroth order solution, W 0 in (33) we
find

W 1(η, θ, φ) = A1(θ, φ)e−ζγη

from (34) we find that
A1

r ≡ 0.

Now from (35) we have

BT −
(

∂Br/∂θ
(sinθ)−1∂Br/∂φ

)
=

∂W 1
T

∂η
= −γζA1

T (θ, φ)

on the boundary. Thus

|W 1
T | =

1
γ

(|BT | + |∇TBr |)e−γη/
√

2

where BT and ∇TBr are evaluated on the boundary. We, therefore, need to estimate the size of
BT and ∇T Br. To obtain a reasonable approximation we again consider the model case where
Ms = δ(· − xT )Ub. Since the function −∇g(·, xT) × Ub satisfies (27) and (29) and has magnitude
γρ−1

T
∼= 0 on ∂Ω we take

B ∼= ∇g(·, xT) × Ub.

A short calculation shows that if ρT >> 1 then

|BT | + |∇TBr | ≤ γρ−1
T .

We can now put all these results together to describe E in the case of high conductivity contrast
σs/σb. We have found, from the outer solution, that E = 0 over most of the domain Ω except for
an O(ε) boundary layer where

E ∼= ερ−1
T e−γ(1−r)/(

√
2ε)

and thus the L1(Ω)-norm of E is ∫

Ω
|E|dx =

Cε2

γρT
(37)

where C is an O(1) constant.

7. Born and SLN Approximations at High Contrasts:
As we have seen in section 6 the electric field tends to zero in the scatterer as Q → ∞. In the

Born approximation the key replacement is the substitution of Eb for E. Since Eb 6= 0 we expect
the Born approximation will blow-up when the contrast becomes large.
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The key replacement in the SLN approximation is the substitution of Γ0Eb for E. Since

Γ0Eb =
3

3 + Q
Eb → 0 as Q → 0

we expect the SLN approximation will be accurate since the Γ0Eb term models the behavior of E
in the case of large Q. In rest of this section we use the result of section 6 to make this statement
more precise.

From (37) and the definition of ε in that section we have

‖E‖L1(Ω) ≤
C

γρTQ
.

Then since |∇g| ≤ Cρ−1
R , |Eb| ≤ Cρ−1

T , and the coefficient of I in Γ0 is O(Q−1), we have

|(H − HSLN)(xR)| ≤ γQ

∫

Ω
|∇g(xR, y)||E(y)− Γ0Eb(y)|dy

≤ Cγρ−1
R Q

(
1

γρTQ
+

1
QρT

)

≤ Cρ−1
R ρ−1

T .

This estimate is (5). Thus the SLN approximation will remain accurate in the high contrast case.
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