Large deviations for quadratic functionals of Gaussian
processes

Wtodzimierz Bryc*
Department of Mathematics
University of Cincinnati
Cincinnati, OH 45 221
brycQuc.edu

Amir Dembo'
Department of Mathematics and Department of Statistics
Stanford University
Stanford, CA 94 305
amir@playfair.stanford.edu

April 9, 1993

Abstract

The Large Deviation Principle is derived for several unbounded additive functionals of cen-
tered stationary Gaussian processes. For example, the rate function corresponding to % f OT X2dt
is the Fenchel-Legendre transform of L(y) = — 4= ffooo log(1 —4myf(s))ds, where X; is a contin-
uous time process with the bounded spectral density f(s). Similar results in the discrete-time
version are obtained for the energy of multivariate Gaussian processes and for the sums of p < 2
powers. Explicit rate functions are obtained in several instances.

1 Introduction

Let E be a separable Banach space. Throughout most of the paper E = R, except in Proposition
2.4, where E = R?, in Proposition 2.5, where E = R%1, and in Proposition 2.2, where the general
case is considered.

Suppose S,,n > 0, are E-valued random variables. We shall say that {n~!S,} satisfies the
Large Deviation Principle (LDP), if there is a lower semicontinuous rate function I : £ — [0, o],
with compact level sets I71([0, a]) for all a > 0, and such that

liminfn~'log P(n~'S, € A) > — inf I(x)

n— oo TEA
for all open subsets A C E;

limsupn~tlog P(n™!'S, € A) < — inf I(z)

n—oo T€A
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for all closed subsets A C E.

We shall work with the continuous indices n (which below are denoted by T rather than n) as
well as with the discrete n = 1,2, ...; in Section 2.3 we shall also consider other normalizations.

For a general stationary process X, the Large Deviation Principle for the empirical measures
(i.e., in the discrete time setup corresponding to S, = Z?zl dx,;) and the related question for
bounded additive functionals (i.e., S, = 377, F(X;), with bounded F(-)) have been studied by a
number of authors under some restriction on dependence; see [13, Section 6.4] for a sample of results,
and [13, Section 6.9 page 280] for relevant references. Gaussian processes were studied in [15], LDP
for Gaussian fields is given in [24], see also [14] for an interesting case.

Large deviations for general unbounded additive functionals of Markov chains under minimal
assumptions were studied e.g. in [22].

Quadratic forms in Gaussian random variables have been studied by various asymptotic methods
e.g. in statistical and electrical engineering literature; for an early paper using the saddle point
method to approximate the distribution for a fixed number of variables, see [21], see also [20]. There
is also a number of papers on the CLT, see e.g. [1], [25] and the references therein. Several results
directly pertinent to the Large Deviation Principle have appeared: [11] gives a version of the Large
Deviation Principle restricted to certain sets and obtained using the Grenander-Szegd method as
employed below (and also in [2] and [8]). Their results however deal with quadratic forms in implicit
way and without explicit expressions for the rate function; [2] presents the heuristic reasoning that
motivated and facilitated much of this paper; in [9], the LDP given as Corollary 2.1 below is stated
under an additional technical assumption; in [7] explicit rate function is found for autoregressive
AR(1) processes.

In this paper, the Large Deviation Principle is derived for several unbounded additive functionals
of stationary centered Gaussian processes that posses spectral density. Of those, quadratic func-
tionals received most attention - for electrical engineering motivation the reader is referred to [8];
motivation from control theory is presented in the introduction to [7]; statistical motivation can be
read out from [11].

The following describes the contents of the paper. In Theorem 2.1 we show that + fOT XZ2dt,
where X; is a continuous time process with the bounded spectral density f(s), satisfies the Large
Deviation Principle and the rate function is given by the Fenchel-Legendre transform of L(y) =
—ﬁ fooo log(1 — 4wy f(s))ds. In Theorem 2.2 we show the corresponding multivariate discrete-time
result. The LDP with normalization of o(n) and the quadratic rate function (corresponding to more
moderate deviations) is derived in Theorem 2.3 for unbounded spectral densities (see [13, Section
3.7] for such results in the context of Cramér’s theorem). In Corollary 2.2 we analyze 1 Z?=1 | X ;1P
for p < 2; the truncation lemma used in the proof allows also to prove the Large Deviation Principle
for H-mixing sequences, in particular extending a result from [5]. In Section 2.5 we specify the
univariate version of Theorem 2.2 (Corollary 2.1) to ARMA(p,q) processes. Proposition 2.3 points
out the relevance to the CLT. In Section 2.7 we incorporate a non-zero mean in the univariate
version of Theorem 2.2, thus deriving the Large Deviation Principle for the empirical variance. In
Section 2.8 the Large Deviation Principle is derived for the empirical autocorrelation vector of an
i.i.d. process X; and some counter intuitive results concerning the validity of this LDP when {X;}
is an AR(1) process are presented. An approach to higher order expansions is sketched in Section

2.9. Examples with explicit rate function are collected in Section 3.

2 Results

This section contains statements of our main results. The proofs are given in Section 4, except for
those results that are marked as immediate consequences of other theorems.



2.1 Continuous time

Let {X;} be a real-valued, centered, separable stationary G_raussian process with the covariance
R(t) = E(XoX,;) and spectral density f(s), i.e., R(t) = [*_ €™ f(s)ds.
Denote St = fOT X2dt, M = ess sup f(s).

Theorem 2.1 Suppose that {X;}i>0 has bounded spectral density function f(s) € L1(R,ds). Then
{%ST} satisfies the Large Deviation Principle with the rate function

I(z) = sup {zy — L(y)},
—oo<y<1/(4m M)
where fory < 1/(4wM)
L) = 4= [ log(l~ dmyf(s))ds. (1)

2.2 Discrete time
The following result is the finite-dimensional discrete time version of Theorem 2.1.

Theorem 2.2 Let {Xj}r=12,.. be a centered, stationary Gaussian Re-valued sequence with the
spectral density F(s) = [F; j(s)] such that ess sup |F(s)|| < oo (where ||F|| denotes the operator
norm associated with the matriz ¥, c.f. (28) below). Then for every nonnegative definite symmetric
real matriz W, {n=! Z;'L:1 (X;|WX;)} satisfies the Large Deviation Principle with the rate function

I(r) = sup  {xy — L(y)},
—oo<y<1/(2M)

where M = ess sup |[WY2F(s)W/2|| and for y < 1/(2M)

L(y) = _i/o Trlog det(I — 2yWF(s))ds. (2)

Remark 2.1 Clearly, Theorem 2.2 implies that the Large Deviation Principle holds also when W
is a nonpositive definite symmetric real matrixz. However, in Section 2.8 we give an example of W
that is neither positive definite nor negative definite for which L(y) = oo even when all eigenvalues
of 2yWF(s) are uniformly (in s) strictly less than 1.

The following special case of Theorem 2.2 is of interest.

Corollary 2.1 Let {Xj}r=12,.. be areal-valued, centered, stationary Gaussian process with bounded
spectral density function f(s) and M = ess sup f(s). Then {1 Z;’L:I X3} satisfies the Large Devia-
tion Principle with the rate function

Ifz)=  sup  {ay—L(y)} 3)
—oo<y<1/(2M)
where M = ess sup f(s) and fory < 1/(2M)
2m
L) =3 [ loa(1 — 20/ (s))as. @

The following result deals with additive functionals that have finite all exponential moments.

Proposition 2.1 Suppose {Xi}r=1,2,... is a centered, real-valued stationary Gaussian process with
the continuous spectral density f(s) satisfying fo% log f(s)ds > —o0. Let F': R — R be a continuous
function such that lim, ..o SUD (. p(a) >y € 2|F ()] = 0. Then {+ > im1 F(X;)} satisfies the Large
Deviation Principle.



The following corollary follows from Corollary 2.1 if p = 2 and from Proposition 2.1 if p < 2.

Corollary 2.2 Suppose that { Xy }r=12,.. has continuous spectral density satisfying fo% log f(s)ds >
—oc0. If p < 2 then {% Z?:1 | X;|P} satisfies the Large Deviation Principle.

Remark 2.2 Theorems 2.1 and 2.2 can be also extended to the multivariate index case (Gaussian
random fields on RF or Z¥). Indeed, [18, Chapter 8] develops the relevant abstract results.

2.3 Unbounded spectral density

A suitably modified variant of the Large Deviation Principle holds true also when the spectral density
is unbounded. Namely, taking S, = >, X7 we shall show that for a certain sequence m,, — oo

random variables {m,, (15, — E(X?}))} satisfy the upper and lower bounds with exponent m?/n,
ie.,
—infge a0 I(x) < liminf,_ o % log P(mn(%Sn — E(X?) € A)
2
< imsup, o, ™ log P(ma (15, — B(X2)) € 4) < —inf,e 5 I(x),

1 ()

where A° and A denote the interior and the closure of a measurable set A respectively.

Theorem 2.3 Suppose that real-valued, centered stationary Gaussian process {X;};>1 has spectral
density function f(s) € Lq(ds), where 2 < g < co. Let {my}be such that n~4m, — co (if ¢ = oo,
assume m, — o0), and n~Y?m, — 0. Then {m, (%S, — E(X?))} satisfies the Large Deviation
Principle (5) with the rate function

where | e
2_ = 2(s)ds. 6
o té f2(s)ds (6)

Remark 2.3 With minor changes in the statement and in the proof, Theorem 2.3 holds true both
in the multivariate setup of Theorem 2.2 and in the continuous time setup of Theorem 2.1 with the
same I(x), but with (6) replaced by

2m
o’ = 7'('71/0 tr (F(s))%ds (7)

in the latter.

2.4 Mixing

The proof of Proposition 2.1 gives also the Large Deviation Principle for unbounded functionals (of
not necessarily Gaussian processes) under mixing conditions.
For a subset C' C N let Fo = 0{X, : j € C}. The following are variants of H-mixing, c.f. [10],
[13].
(H-1) There are C,¢ < oo and a > 1 such that for k¥ > 1 and all j < k if Y; > 0 are bounded
f[a].,b].]—measurable and a; < by <ag < ... are such that a;; —b; > £ then

k
WE(1159)|S<7kIIIDGHa- (9)

j=1 j=1



(H-2) There are C < 00,0 <y < 1, 6 > 0 and a non-negative sequence 3(n) such that for all n
large enough S(n) < Wqﬂgn and for all X € Loo(Fjox)) and Y € Loo(Flatr,00))

[E(XY) = E(X)EY)| <X li+60) 1Y [l14+5¢0)- (10)

Let E be a separable Banach space with norm || - || and S,, = Z?=1 X;.

Proposition 2.2 Suppose {Xj}r=12,.. is stationary E-valued, satisfies conditions (H-1) and (H-2)

above, and

yeoee

E(exp(0]|X4]])) < oo
for all & > 0. Then {18S,} satisfies the Large Deviation Principle.
Recall that ¢-mixing coeflicients are defined by

{\E(XY) - EX)E®Y)|
E(X)E(Y)

¥(n) = sup X € Ll(f[07k]),y S Ll(f[k+n,oo))7X >0,Y >0,k > 1}

(this is equivalent to the usual definition that uses indicator functions for X and Y').

Corollary 2.3 (compare [5, Theorem 2|) Suppose {Xj}r=12,. s a stationary sequence of E-
valued random variables with E(exp(0||X1]))) < oo for all > 0 and (n) — 0. Then {18, } satisfies
the Large Deviation Principle.

Indeed, it is easily seen that under t-mixing both (H-1) and (H-2) are satisfied with a = 1,C =
1+1(£),B(n) =0 and with arbitrary v > 0.

Remark 2.4 It is known that if Y(N) < oo for some N and {X;} is ergodic-mizing (or in the
terminology of [5] w_(M) > 0), then ¥ (n) — 0, see [3].

2.5 Application to ARMA(p,q)
Suppose { X }x=1,2,.. is an ARMA(p, q) sequence, i.e., {X} is the stationary solution of

p q
Y aiXn = Bimmj (11)
i=0 Jj=0

where {v;} are i.i.d. N(0,1) r.v. (Note that sequences {;} and {X,} are dependent; in particular,
each 7, might depend on the whole trajectory of {X,})

For z € C define polynomials p(z) = > ©_, ;2" and ¢(z) = Z?:o B;27, where without loss of
generality apapBo8, # 0. It is well known (c.f. [23, page 42, Theorem 3]) that if p(-) has no roots
of modulus one, then the stationary solution of (11) exists.

For fixed y € R, such that y # 0 if ¢ > p, and y # 20‘;00;;2 if g =p, let
9y(2) = p(2)p(1/2) — 2yq(2)q(1/z). (12)

Denote by Ui(y),...,Uk(y) the (complex) roots of the equation g,(z) = 0 (in variable z) that
have modulus larger than 1. Here, multiple roots are listed separately and it is easy to see that

k = max{p, q}.
Define

Uo(y) = 1if ¢ < p,

UO(y) = Qolg — 2yﬂoﬁq if ¢ = p,



Uo(y) =y if ¢ > p.

a(e’)

p(e’*)

Let M = sup,

- Fory <1/(2M),y #0 (if p < q), y # 35,5 (if ¢ =p), let

k
2(y) = 3 log U (9. (13)

Theorem 2.4 Suppose that { Xy }r=1,2, .. is the stationary solution of (11) and that polynomial p(z)
has no zeros of modulus one. Then {% Z?:l XJQ} satisfies the Large Deviation Principle. Moreover,
D(y) extends continuously to ally < 1/(2M), and the rate function is given by the Fenchel-Legendre
transform of L(y) = 1®(0) — 1®(y), i.e.,

-2

1 1
I(r) = sup {wy+§¢(y)—§‘1>(0)}-
y<1l/(2M)

Remark 2.5 IfU;(y) > 0 are real, one can write

’

k
U.
1) = =300~ § 3 0p 2 ~los ()
j=o0 J

where y = y(x) is the (unique, since L' (-) is increasing) solution of the equation

’

W _
W o

=

=

k
=0

Thus I(z) = >_; Ij(x;), where I;(-) are the rate functions corresponding to suitable ARMA(1,1) and

>.;®; = is the "equal energy” (i.e., I (1) = I;(xj)) decomposition of x.

2.6 Normal convergence

Lemmas 4.3 and 4.6 from the proof of the LDP yield the following Central Limit Theorem. At least
in the univariate discrete time setup this result is known, see [1, Theorem 2], [17, Theorem 2] for a
direct proof (for non-normal convergence, see [25]). Related results for more general processes are
given in [4, Theorem 5] and the references therein, c.f. also [23, page 58, Theorem 3].

Proposition 2.3 (i) If{X;} is a real-valued, centered, separable stationary Gaussian process with
the spectral density f(s) € La(R,ds)NL1(R,ds), then ﬁ fOT(Xt2 — E(X2))dt is asymptotically
normal N(0,0) as T — oo with o2 given by (8).

(i5) If {Xk}r=1.2... is a centered, stationary Gaussian R%-valued sequence with the spectral density
F(s) = [F;;(s)], such that tr (F(s))? is integrable, then

% D (KX) — B4 [X0))

is asymptotically normal N(0,0) as n — oo with o given by (7).



2.7 Non-centered processes and the LDP for the empirical variance

Many of the results presented above carry over to the case of non-centered stationary Gaussian pro-
cesses by application of the contraction principle. For concreteness, consider the setup of Corollary
2.1, i.e. let {X,} be a real-valued centered stationary Gaussian process.

The next proposition deals with the Large Deviation Principle (in R?) for the sequence {n~1S,, =
n_l [Z:’;:l XJ’ Z;:l X]2]/}
Proposition 2.4 Suppose that spectral density f(-) is differentiable. Then {n='S,} satisfies the
Large Deviation Principle with the rate function
i

2/(0)

where I1(-) is the rate function given by (3), and if f(0) = 0 then J(x1,z2) = oo for x1 # 0 while
J(O, 372) = I<$2>

J(x1, x2) = I(xo — 22) + (14)

Applying the contraction principle (see [13, Theorem 4.2.1]) with respect to the continuous function
g(z1,72) = 2o +221u+p2 1 R?2 — R, we see that for a non-centered process Y; = X, +u, the sequence
{n=t > i1 Y7 =g(n~'S,)} satisfies the Large Deviation Principle (in R) with rate function

2
. Yy
J'(2) = inf J(z1,20) = sup {zy— ———— —L(y)},

) {(21,22):2=g(z1,22)} ( ) y<1/(2M>{ 1—2yf(0) W)}

where M = ess sup f(s) and L(y) given by (4), compare also [2, page 361]. Similarly, applying the
contraction principle with respect to the continuous function h(x1,r3) = zo — 27 results with the
empirical variance of {X; };?:1 satisfying the Large Deviation Principle with the rate function I(-)
given by (3) (i.e. the same rate as for {n~! > X7}).

2.8 The empirical autocorrelation vector

For 5 > 0, let S,Sj) = ZZ;{ X Xiyj. Then n—ls,(l” is the j-th empirical autocorrelation based on
the sample of size n. For fixed d > 1 let S,, = [87(10), ce S,(Ld)] € R If f(-) is the spectral density
of {X;}, denote

f(s) = [f(s), f(s)coss, ..., f(s)cossd] € RO
Proposition 2.5 Suppose that {Xj}r=12,.. are i.i.d. N(0,1) random variables. Then {%Sn} sat-
isfies the Large Deviation Principle with the rate function

I(x) = sup{(x|y) — L(y) : y € D},

where

D={yeR™': sup (y|f(s)) <1/2},
0<s<2m

and fory € D
1 27
L) = —3- [ toa(1 —2ty18(s))as.

Remark 2.6 The proof of Proposition 2.5 (with the same formula for the rate function) extends to
any differentiable spectral density f(s) provided that for all'y € D

limsupn ! log E(exp({y|S,))) < oo . (15)
However, the example below shows that for d = 1 and for every AR(1) process with 0 < |a| < 1, (15)

is false for somey € D. Hence, in these cases even zf{%Sn} satisfies the Large Deviation Principle,
the rate function cannot be given by the expression as in Proposition 2.5.



Example 2.1 Let Xj, be an AR(1) process (with o =1, f1 = 0 and 0 < |a|] < 1) corresponding
to r; = E[XoX;] = a'/(1 —a®) for i = 0,1,... and f(s) = 1/(1 + a® — 2acoss). Therefore
y = A[1+a?, —2da]’ € D for every A < 1/2. Let R,, denote the covariance matriz of X = [X1,..., X,]
and let Y,, be the n x n symmetric Toeplitz matriz corresponding to yo = A\(1+ a?), y1 = —Xa and
yi =0 for all1 <i<n-—1. Since R 'ro,...,7n_1) = [1,0,...,0), we have for A > (1 — a?)/2
and all n large enough

n—1 n—2
(ros - s 1) |Ry Y = 2Y,)[r0s - - s rna]) = 10 — 2A(1 + a?) Z r? +4Xa Z riTit1 <0,
=0 =0

implying that E(exp(A(1 + aQ)Sy(lo) - 2)\(15’7(11))) =00 (see Lemma 4.1).
Note that the above expression is related to Theorem 2.2. Indeed,

n—1

AL+ @) (0 — 7 X2 — (1 - 7)X?) — 23as() = 3 (X, W, X,)
j=1
where X; = [X;, X;41) € R? and
B ¥(1 + a?) —a
WimA e e a)

Considering A\ > 0, W., is nonnegative definite iff v € [a®/(1+ a?),1/(1 + a?)]. For this range of ~y
it follows by applying Lemma 4.6 to Y; = WE/QX]- that for all A < 1/2,

1
lim n~'log E(exp(A(1 + a?) (S —4X2 — (1 —y)X}) — 2XaSV)) = —5log(1—2)) . (16)
It can also be verified that for every v > 1/(1+a?) the left side of (16) is infinite for some X € (0,1/2),
while the eigenvalues of W, F(s) (which are 0 and \) are independent of .

Remark 2.7 The example shows that the large deviations of the empirical autocorrelation vector
are sensitive to boundary effects (the choice of vv), and that Theorem 2.2 does not extend to matrices
W which are neither nonnegative definite nor nonpositive definite.

2.9 Exact asymptotic

The following result comes essentially form [18, page 76]. Together with saddle point approximation,
it can be used to find higher order asymptotic expansions for probabilities of ”"regular enough” sets
in Corollary 2.1. We do not pursue this possibility here.

Proposition 2.6 Suppose {Xi}ir>1 is a centered, real-valued stationary Gaussian sequence with
bounded spectral density f(s) and M = ess sup f(s). Let S, = > 1_; X} and L(y) be defined by (4).
Then for ally < 1/(2M) the sequence {exp(—nL(y))E(exp(ySy))} is monotonically nonincreasing.
If in addition f(s) is differentiable and for some o > 0 the function f'(s) is uniformly Lipschitz
continuous with exponent o then

Jim exp(—nL(y) E(exp(sS,)) = explL() - 5= [ /| _ W (e)dn)

where _

1 —18
1rze 7,
1—ze™?s

27
hy(2) = = /0 log(1 — 2y/(s))

and o(dz) is the surface measure on the unit disc in C.

S,



3 Examples

Below we collect several examples with explicit rate function.

Example 3.1 (Ornstein-Uhlenbeck process) Suppose X; is the stationary solution to dX; =
—aX; + vadWy, a > 0. The spectral density is f(s) = %ﬁ Ezxpression (1) from Theorem 2.1
can be integrated, giving for y < a/4

Therefore for x > 0

and I(xz) = oo otherwise.

Example 3.2 (Narrow-band noise; continuous time) Suppose X; has spectral density f(s) =

"WQ for s in a (symmetric about 0) set of Lebesgue measure W and 0 otherwise. By Theorem 2.1 the
Large Deviation Principle holds for T=1St and for y < W/(4wo?)

Ly) =~ log(1 — droy/WV). (17)
Therefore, for x > 0
I(x) = %(% —1-log(5)) (18)
and I(xz) = oo otherwise.
Example 3.3 (Narrow-band noise; discrete time) Suppose X}, has spectral density f(s) = 2715[‘,72

for s in a (symmetric about 0) set of Lebesque measure W and 0 otherwise. Then by Corollary 2.1
the LDP holds, with L(y) and the rate function I(x) given by (17) and (18), respectively.

Example 3.4 (ARMA(1,1)) Suppose {X} solves the recurrence
Xnt1 = aXn + B1vn + Bovn+1,

where {;} are i.i.d. N(0,1) r.v. and |a| # 1.
Then { X} is ARMA(1,1) with p(z) =1 —az, q(z) = Bo + f1z and

9y(2) = (1 +a® = 2y(65 + B7)) — (a + 2yBoB1) (2 + 1/2).
Here Uyp(y) = a + 2yBof1 and

_ 1+a® 295 + 47

N RSN
L V(L +a)? = 2y(Bo — 51)*)((1 — a)? — 2y(Bo + $1)?)
2(a + 2yBoS) '
Therefore , , ,
q)(y) _ log(l +a® — 22y(50 + ﬁl)
N =2 = BP0 = P =2 + 7
2



Since ®(0) =0V loga?, we get

L) = — L 1og( L = 205 + 51 + V(1 + G)Z@ 3y(6) B =0 =2y + 51)7)

To find the rate function explicitly, one needs to solve the resulting quartic equation and choose its
correct root. Therefore, below we list only special cases when this can be avoided.
(i) Explicit rate function for AR(1), compare [7] (choose By = 1,01 = 0,]a| #1). Then

1 1+ a? =2y + /(1 + a2 — 2y)? — 4a?

and for x >0

1 1+ +V4a222 +1 1 1
I(e) = log g o + (6 + o — 5 Adha? 1

(i1) Explicit rate function for the Moving Average of two r.v.(choose a =0). Then

) = L 1og 1720008+ 20+ SO 20 = RPN 24 )

)

1 1—-4y++/1—-8y 1 2
0 =log —F——
& 2 ST VI gy

and for x >0

1 _ 1+,/1+ 46
I(x):£\11+;6+x168+10g .

16 4

Example 3.5 (i.i.d. example for Proposition 2.5) Suppose X; are N(0,1) i.i.d. (i.e., f(s) =
1). Then by Proposition 2.5 the LDP holds for [L S0 X2, L ST' 71 X3 Xii1]'. The caleulations
done in Example 3.4 give

1 —2yo + /(1 — 2yo)? —49?)
9

1
L(yo7y1) = D) log(

where
D = {(yo,y1) : ly1| <1/2 —yo}.

Therefore one gets the rate function

3?0—1
2

Lo

72)

I(zg,21) = o

1
+ 5 log(
if o > 0 and |z1] < zo (I(z0,x1) = 00 otherwise).

4 Proofs

We shall need the following well known elementary result.

10



Lemma 4.1 Suppose X = [X1,...,X,] is a real valued centered Gaussian vector with the co-
variance matrix R and let M be a symmetric real valued n X n-matriz. Then with \1,..., \, the
eigenvalues of the matriz MR

1 n
log F exp(z(X|MX)) = ~3 Zlog(l —2z);)
j=1

for z € C such that max;{Re(z)\;} < 1/2. Furthermore, log E exp(y(X|MX)) = 0o fory € R such
that max;{y\;} > 1/2.

With X = R!/2Z and Z a standard multivariate normal, Lemma 4.1 follows by direct integration
of the density of Z.

Lemma 4.2 If {Y;} are i.i.d. r.v. with mean zero, finite second moment and positive probability
density function at 0, then for each 0 > 0 there is 6 > 0 such that

inf{P(|Y kY| <0):> |ki| <1} > 4.
=1 [

Proof: Denote 02 = E(Y?) and fix the sequence {k;}. Without loss of generality, we may assume
that |k;| > |k;41| for all i > 1. Note that then the condition }_; |k;[ < 1 implies that [k;| < 1/j for
all 7 > 1. Consequently, for every » > 1 by Chebyshev’s inequality we have

P(‘Zk‘iYi|<9)21_§ 2 (19)

i=r j=r

Note that one can find ro = 79(6) such that the right hand side of (19) is strictly positive. Choose
now such r(0/2). By independence we have

o) T0 o)
P(|Y kYi|<60) > P(>_ kYi| <0/2)P(| Y kiY;| < 6/2)
i=1 i=1 i=ro
and, since |k;| < 1, using (19) we get

P(|Y_kiYi| < 0) > P(max |Vi| <6/(2r0))P(| 3_ kY| < 6/2)

i=1 i=ro

402 1
Py

Jj=ro

ZP(‘Y1| <9/(2T0))r0 1-— =: 0.

This ends the proof with § > 0 as defined above.O

4.1 Proof of Theorem 2.1

For complex z with Re(z) < -, let Ly (z) = log E(exp(2S57)).

The following Lemma was motivated by a heuristic argument in [2].

Lemma 4.3 Under the assumptions of Theorem 2.1, for Re(z) < ﬁ we have

. 1 1 [
Thﬂrr(l)o TLT(Z) =~ [m log(1 — 4wz f(s))ds.
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Proof: For T > 0, denote by A; = A\;(T") the eigenvalues of

/0 R(t — $)g(s)ds = Ag(t) € Lo([0,T]) (20)

and let e; = ¢;(t) € L2([0,T],dt) be the corresponding orthonormal eigenfunctions. Since by
Mercer’s theorem, R(t —s) = >, Aje;(t)e;(s) with positive and summable eigenvalues {A;}, we
have the Karhunen-Loéve expansion X; = >, \/A;7;€;(t), where ; are i.i.d. N(0,1). Note that

T T oo
supA; = sup / g(t)dt/ g(u)du/ e WS £(5)ds.
0 0

J g€La,llg|l=1 —o0

Since for T' < oo each square-integrable g(-) is integrable, we may switch the order of integration,
which gives

00 T
sup \; < M/ |/ g(t)e'dt|*ds = 2t M, (21)
J —oo JO

where the last equality is by Plancherel’s theorem. Therefore Re(z) < 1/(4nM) < 1/(2);) and

1/T log Elexp(2S7)] = —1/(2T) > log(1 — 221;). (22)

=1

Let pr(dx) = 1/T3;65,(dz) be the distribution of the eigenvalues on [0,27M]. Fix z and
choose 0 > 0 such that 2|z]6 < 1 and such that {s: 2nf(s) = §} is of Lebesgue measure zero. By
[18, page 139] for k =1,2,... we have

2 M

Jim [ () = (2m) / s (23)

and also for every bounded continuous F(+)

2n M

Th_r}r(l)O : F(x)pr(dz) = % /{S:%f(s)zé} F(2nf(s))ds. (24)

Let Py(x) be the k-th Taylor polynomial for z — log(1 — 2zx). Notice that from (23) and (24), for
each fixed k we get

5
1
/ Pi(e)pr(dr) — o / Po(27f(s))ds. (25)
0 T J{s:2mf(s)<5}
Clearly, for 0 < z < § we have
> R N 7107 ) L B P
P, —log(1—2 = 2zx)’ — < = )

Given € > 0 choose k > 2|z|(1 — 2]2|6)"te~!. Then by (25) choose Ty = Ty(k) such that for all
T > Ty we have

0 1
[ P@nrtan) - 5 /{ sy BRSO <
and by (23) (with k=1)
2w M
/ zur(dx) < 2R(0).
0

12



Enlarging T if necessary, by (24) we may also ensure

2 M
1

|/ log(1 — 2zz)pr(dz) — / log(1 —4mzf(s))ds| < e
27T {s:2m f(s)>d}

for all T' > Ty. Therefore for all T > T, we have

27 M 00
\/0 log(1 — 2zx)pr(dz) — %/ log(1 — 4wz f(s))ds|

—00

M
< |/2 log(1 — 2zx)pr(dx) — log(1 — 4wz f(s))ds|

2m /{s:2ﬂf(s)26}

1
+ / Pl (de) — o Py(2m(s))ds]
T J{s:2m f(s)<8}

2w M
+e/0 e (de) + /f (s)ds < (2 + 3R(0))e.

Remark 4.1 By the induced convergence for analytic functions, from Lemma 4.3 it follows that for

1
Y < Tzu1

(this can be also verified directly using [18, page 139]).

Remark 4.2 Let A\ (T) be the mazimal eigenvalue of (20). Then A\ (T) < 2xM by (21), and
therefore by [18, page 139] one has \(T) — 27 M as T — oo.

Proof of Theorem 2.1: By Remark 4.2 and Lemma 4.1 it follows that L(y) = limp .o T" Ly (y) is
infinite for y > 1/(47 M), and by Lemma 4.3 L(y) exists and given by (1) for ally < 1/(4wM). Define
L(1/(4wM)) = limy_~ j(arary L(y) (which by monotone convergence coincides with L(1/(4wM)) of
(1)), and note that by the monotonicity of L (y) with respect to y

lim inf T'L > L(1/(4xM)) . 26
it T Lr(yr) 2 L(1/ (47 ) (26)

By [13, Theorem 2.3.6], the result follows immediately if L(1/(47M)) = oo, for then (26) holds with
equality, and L(-) is steep, i.e., limy ~1/(4rnr) d%L(y) = 0.

Checking the proof of Gartner-Ellis Theorem in [13, Theorem 2.3.6] (see also [13, Theorem 4.5.1])
we have the following (even if T='Lz(1/(47M)) fails to converge).

(a) The upper bound holds on (—oo, c0) with the rate function
I(‘T) = Supy<1/(47‘rM){xy - L(y)}7

(b) Excluding the trivial case of zero spectral density, since L’'(y) > 0 is non-decreasing, there is
¢ > 0 such that L'(y) — casy /" 1/(4nM). Then, the lower bound holds on (—oo,c) with
same rate function I(z).

13



Consequently, if L(-) is steep (as is the case for example when f(s) is differentiable), then the
proof of the Large Deviation Principle is complete (even for L(1/(4wM)) < 00). In case L(-) is not
steep, i.e. ¢ < 00, it is simple to check that for x > ¢ the rate function is given by

T 1

He) = 13 ~ M)

Therefore to prove the Large Deviation Principle it suffices to establish the lower bound

1
lim inf 7 log P(|T7'Sy — x| <€) > —I(x+¢) (27)

for all > ¢ and all € > 0 small enough. Indeed, (27) gives the large deviations lower bound for
small enough open balls centered at « > ¢. Since I(x) is convex and finite on (0, 00), it is continuous
at £ = ¢ and hence the lower bound extends to open balls centered at x = c.

The proof of (27) follows the strategy of T-dependent change of measure as in [13, Exercise
2.3.24].

Let A1 (T) > Xa(T) > ... > Aa(T) > ... be the eigenvalues of (20) and let
s
kj= o2t —r
T(l — QyT)\j)
where yr — 1/(4mM) is such that 3372 | k; = .

To see why such yr exist note that T_ld%LT(y) =T7"32,7/(1—2y\;) is monotone in y and
approaches oo as y approaches 1/(2A1). Thus Z]oozl k; = x has the unique solution yr < 1/(2X1(T"))
and limsupy yr < 1/(4nM) by Remark 4.2. Moreover, for each fixed y < 1/(4wM), by Remark 4.1
limp T_ld%LT(y) = d%L(y) < ¢ < x; hence yr — 1/(4nM) as claimed.

We take the above sequence yr — 1/(47M) and do a change of measure via the Radon-Nikodym
derivative

dQr

—p = exp(yrSt — Lr(yr))-

For large enough 7', we have yp > 0. Therefore
1 _1 1 dP
T log P(IT™ St — x| <€) =T log( dCTTHT—lsT—zKedQT)

> T " ogQr(|T~ 'St — 2| <€) — (yr(z +€) = T~ ' Lr(yr))

By (26) to end the proof we only need a uniform in 7" estimate from below on
Qr(IT 'Sy — x| <e)

for all € > 0.
Let Vr denote the r.v. (T~1St —2) under measure Q7. Note that by (22) the Laplace transform
of Vi for our choice of yr is given by

ElesVT] = Hexp(—ski)/\/ 1 — sk;.
i=1
Therefore Vp has the representation
V= ki(Z;-1)
j=1

with Z; i.i.d. normal N(0,1).
The theorem now follows from Lemma 4.2, which we use with Y; = aJ(Z]2 —1)and §=¢. O

14



Remark 4.3 Formally, one might expect that the value of L(1/(4nM)) given by (1) equals the limit
of T='log E(exp(St/(4wM))) as T — oo. Indeed, this is true when L(1/(4nM)) = oo, but otherwise
it is not clear that the limit even exists and our proof of Theorem 2.1 circumvents this point.

4.2 Proof of Theorem 2.2

Throughout this proof we consider R™, n > 1 as Hilbert subspaces of {5 with the inherited norms.
For an n x n-matrix A, we consider the usual operator norm

A
1A= sup 121 (28)
yER™\0 ||YH
and the Hilbert-Schmidt norm
|A] =4/ tr (AAY)

(with the usual convention that A’ is the conjugate transpose of the matrix A). It is well known
that |ABC| < ||A|| - |B| - ||C||, and that ||A|| < |A], see e.g. [16, Section XI.6]. We shall also use
the elementary bound tr A < n'/2|A| < n|A].

The distribution of the eigenvalues {A1,..., A\, } of A is the discrete probability measure

pin (dz) = n? Z dy, (dx)

Jj=1

(either on R or on C, depending on whether A is symmetric, or not).
Consider now two sequences of matrices {A,} and {B,}. The following result is known and a
short proof is enclosed for completeness.

Lemma 4.4 ([18, p 105]) Suppose the n X n matrices A, and B, have the distribution of the
eigenvalues [, and v, respectively and assume that

sup([|An + [[Bal]) < oo, (29)
and

lim n 'A, —B,]* =0. (30)
Then limy, .o | [ 2% p,(dz) — [ 2%, (dz)| = 0 for every k =1,2,. ..
Proof:

| /x’“unwx) - /f“kvn@lw)l =n7' tr (An = By)| <n”2|AL - By
k
= n_1/2| Z Afz_j (A, — Bn)Bffl|
j=1
< nil/Q‘An — By |k max{||A, "7, [B,[*'}.

O

Let R,, = cov(Xg, X,,) be the d x d-covariance matrices, and consider the block-Toeplitz nd x nd
matrix

R9 R1 “e . Rn_l
R, Ry ... R,
A, = ) _ .
R, , R,, ... Rg

Let ., be the distribution of the eigenvalues of A,,. The asymptotic of u, follows by extending
the argument of [18, page 113] to the d-dimensional matrix case as follows.

15



Lemma 4.5 If M = ess sup||F(s)|| < oo then sup,, ||A,|| < M. Moreover, for any a < b such that
m(s:Aj(s) =a)=m(s: Xj(s)=b)=0 forj=1,...,d,

lim py,([a,b]) = (27d)~ (s:a<Aj(s) <b), (31)

n—00

HM@

where m is Lebesgue measure on [0,27] and A1 (s) > Aa(s) > -+ Aq(s) > 0 are the eigenvalues of
F(s) (recall that F(s),0 < s < 27, are Hermitian, nonnegative definite matrices).

Proof: For (n—1)/2> A>1let

Ry Ry ... Ra 0 ... 0 ]
ﬁll f{o ﬁA,1 ﬁA 0
- . . 0
B,a=| R, Ra
0
. : R : Ro 1:{1
L 0 ... 0 R, .. R, R |

be an nd x nd-matrix, where Ry, = (1-k/A)Ry for k =0,...,A and Ry, =0fork> A (with
R_; = R;g) Let C,, 4 be the block-circulant matrix associated with B,, 4, defined as follows.

[Ro Ry ... R4 0 ... 0 R, ... R]]
R, Ry ... Ruy Ra 0 ‘ :
. . o &,
R, 0
Coa=| ¥
0
0 R4
R :
E K o g 1:{1
'R, ... R4 0 ... 0 R, ... R, Rg |

Let Fa(s) = ZQZ_A e*iksﬁk, with {)\; x};j=1,.. 4 denoting the eigenvalues of F,(27k/n), k =

0,...,n—1and v, € R the corresponding eigenvectors. The usual argument for circulant matrices
shows that for j =1,...,d,k =0,...,n — 1 the nd-dimensional vectors
(Vj,k:7 eQﬂ'ik/’rLVjJ€7 o ’e2ﬂ'zk(n 1)/nvj k:)

are the linearly independent eigenvectors of C,, 4 corresponding to the eigenvalues A;; therefore
those are all the eigenvalues of C,, 4. Consequently, ||C,, 4| < sup, ||Fa(s)| and since

1 2 sm( (s — )/2)
A= 5 ) T am O
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clearly,

1 7 sin®(At/2
sup [Fa(o)] < sup [P - [ St = (32)

We turn now to prove that ||A,|| < M and || B, || < M. To this end, fix n, pick x; € R? and
write x = (x;) as a column vector. Then,

(x|A, x) = / Ze *xi|F(s) Ze
< (2m)! / ||Ze-““x/c|| IF(s) ds

1 ik
< swp [|F(s) / ||Ze “sxel|Pds) = Mx|?
0

0<s<2n 2

By a similar argument we have for n > A

n

21 n
xBaax) = (2071 [ (e xila(e) Y e
0 m=1

k=1
< x| sup [Fa(s)]| < MlJx|*.
S

This shows that matrices A,, and B, 4 and C,, 4 satisfy (29) for every choice of A < (n —1)/2.
By applying Parseval’s relation elementwise one has

e 27
3 IRj|2=(2w)—1/ F(s)|2ds < d M2 .
j=—o00 0

Since for every n > A we have

n~'A, —Bp.al? <QZJ/A IR, +2 Z IR, %,
j=A+1

by Kronecker’s Lemma it follows that n=!|A,, — By, a|? can be made arbitrarily small (uniformly in
n > A) by choosing A large enough. Therefore, by choosing first A large and then n large enough,
we can make sure that (30) holds both for |A,, — B, 4| and for |B,, 4 — C,, 4| since

A
Bua—Cpal> <24) [R;|* < AdM*.
j=1

Consequently, by Lemma 4.4 the asymptotic of u, is the same as the asymptotic of the distribution
of the eigenvalues of C,, 4 provided we let n — oo first and then take A — oo.
Fix a positive integer ¢. In view of the continuity of F 4(s) we have for any fixed A > 1

n— oo 27T

n 27
lim n 12 tr (Fa( 27Tk/n) ) = ! / tr (FA(S)é)dS.
k=1

Also
27 27
)7t r szf sf s|? )7t sef 5425
Cr) 7t [ (Rale) ~ F)as < dezm) ! [ Ra(e) - PP
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27
< deMW*l)(%)*l/ [Fa(s) — F(s)[*ds,

0

and since,

<27r>—1/0”|FA<s> \ds—azy/A PR 2SS R,

J=A+1

we have for A — oo that fOQW tr (Fa(s)! — F(s)")ds — 0, leading to

A— o0 n—oo i

n 1 2
lim lim n~* Z tr (Fa(2mk/n)%) = 2—/ tr (F(s)%)ds .
— 0

With the above limit holding for every positive integer ¢, the limit (31) follows by [18, page 105]. O
Let S, = Z?:1<Xj|Xj> and for complex z, let L, (z) = log E(exp(25y)).

Lemma 4.6 If supS |IF(s)|| = M < oo, then the limit lim, .o, ~

~Ly(2) eists for every z in the
half-plane Re z < W and

27

lim an(z) =—— log det(I — 22F(s))ds . (33)

n—oo n 47
Remark 4.4 For d =1 this lemma is known, see [8, page 105], or [9, Example 3.1 a)].

Proof: Clearly,
Sn = [X1,..., Xu][ Xy, ..., X,

Therefore by Lemma 4.1, for Re(z) < 1/(2max; \;)

nd

n'L,(z) = —1/(2n) Zlog(l —22)),

where {);} are the eigenvalues of the symmetric nonnegative definite matrix A,,.

Lemma 4.5 implies that max; A\; = ||A,| < M for all n, and by (31) actually |A,|| — M as
n — oo. Consequently, (33) follows by applying (31) and observing that

M
N L, (2) = _g/o log(1 — 2z) pu, (dx) .

Remark 4.5 By the induced convergence for analytic functions, from Lemma 4.6 it follows that for
y < 1/(2M)

d 27
_17 el
n gy W) = L =9 Z/ 1— Qy/\ T2, ()

where A\j(s),j =1,...,d are the (nonnegative) eigenvalues of F(s). (This claim can also be verified
directly from (31).)
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Proof of Theorem 2.2: For W an identity matrix, the proof repeats the reasoning from the proof of
Theorem 2.1. Indeed, by Lemma 4.6, n='L,,(y) converges to L(y) of (2) for y < 1/(2M), while by
Lemmas 4.1 and 4.5, for y > 1/(2M)

L(y) = lim n™'Ly(y) = oo
Excluding the trivial case of zero spectral density, notice that L'(y) > 0 is monotonically in-
creasing for y < 1/(2M), and let ¢ > 0 be such that L'(y) — c as y / 1/(2M). Defining
L(1/(2M)) = limy,_~1 /200y L(y), if L(y) is steep, i.e. ¢ = oo, then the proof of Gértner-Ellis Theorem
in [13, Theorem 2.3.6] (see also [13, Theorem 4.5.1]) yields the Large Deviation Principle even if
n~L,(1/(2M)) fails to converge. If L(-) is not steep then for x > ¢, the rate function is given
by I(z) = 55 — L(557)- Letting {);} denote the nonnegative eigenvalues of the matrix A, the

2M
n-dependent change of measure via dﬁ; = exp(YnSn — Ln(yn)) results with n=1S,, — z (under Q,,)

having the representation Z?il kj(Z7 —1) with Z; ii.d. normal N(0,1) and k; = X;/(n(1—2y,\;)),
where y, < 1/(2max; \;) chosen such that Z?jl k; = . Since max;{\;} = [|[A,|| = M as n — oo
it follows by Remark 4.5, that lim,, y, = 1/(2M) and the proof of the large deviations lower bound
for > ¢ is completed by applying Lemma 4.2 (note that liminf, n=*L,(y,) > L(1/(2M))). For
any W nonnegative definite symmetric real matrix, we have W = W/2W1/2 with W'/2 also non-
negative symmetric real matrix. Hence (X;|WX;) = (Y;[Y;) for j = 1,2,..., where Y; = W'/2X;
is a stationary process of bounded spectral density W1/ QF(S)WU 2, Therefore, the general case
follows by applying the above proof to the process {Y;}. O

Remark 4.6 For d = 1, by Lemma 4.1 and [18, pages 38, 44], n~'log E(exp((2M)~* > i1 X?))
converges as n — oo to L(1/(2M)) of (4). The wvalidity of this result in the general context of
Theorem 2.2 is not addressed here.

4.3 Proof of Theorem 2.3

The proof is based on the Gartner-Ellis Theorem (c.f. [13, Theorem 2.3.6 and Remark (a)]) used
with the normalization a,, = m2/n — 0.
We shall need the following estimate for the maximal eigenvalue of the covariance matrices.

Lemma 4.7 If 1 < q < oo then there is C' < oo such that for all n > 1 if A, is the covariance
1
matriz of [X1,...,X,] then ||A,|| < Cna.

Proof: Let x = [x1,...,2,) besuch that ||x|| =1 and ||A,|| = (x|A,x). Then, denoting 1/p+1/q =

2m iis 27 iis _
LWihaVeHAnH = o Jo FOI T @i Pds < ||fllg(zx fo | @ie?*|?Pds)/P < C(X |ay|)Pr=2/7 <
Cnt'/1.0

Proof of Theorem 2.3: Denote T,, = m, (15, — EX}) and as previously, let \; = A;(n),1 < j < n,

be the eigenvalues of the covariance of Xi,...,X,. Since by Lemma 4.7 and the choice of m,
max; \;/my — 0, for every y € R and for all n > ng(y) we have

1 n
log E exp(nm,, 2yT,) = —ynm, 'EX? — 3 Zlog(l —2y\j/my) .
j=1

Notice that by Taylor’s Theorem for |w| < 1

log(1 —w) = —w — (1/2)w?(1 — tw) ™2,
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where ¢t = t(w) € [0,1]. This is applied here to w; = 2y\;/m, which by Lemma 4.7 satisfies
sup; |w;| — 0 as n — oo, and hence, |1 —#(w;j)w;| — 1 uniformly in 1 < j < n. This shows that
the limit of

m2n~"log E exp(nm,, *yT,)

is the same as that of
ymn(n_IZ)\j—E( N+y n_lz)\Q
j=1

Clearly, Z 1A= tr A, =nE(X?), and

n n—1 n—1 n—1
n_lz/\§ =n"ltrAZ = Z (1 — |k|/n)r} = Z e —ZZz(k'/n)r,~C
Jj=1 k=—(n—1) k=—(n—1) k=1

Notice that by Parseval’s identity Ek_f(n 1 T = Yo

hand, by Kronecker’s Lemma Zk:l (k/n)ri — 0 as n — oo leading to

r? = 0%/2 as n — oo. On the other

— 00

122

lim m2n~!log Fexp(nm,, *yT,) = ~y*c>.

n—oo 2

This ends the proof by the Géartner-Ellis Theorem. O

4.4 Proof of Propositions 2.1 and 2.2

Let F be a separable Banach space.
Lemma 4.8 Suppose {Xy} are E-valued such that

(a) for every M > 0 there exists an E-valued sequence Y such that {n~1 Sy YMY satisfies the
Large Deviation Principle

(b) for each 8 >0

lim sup hmsup logE exp HZ 1Xe — YM|) < K@), (34)

M—oo n—00 =1
and K(0)/6 — 0 as § — oo.

Then {n~'>"}_, X} satisfies the Large Deviation Principle if this sequence is exponentially
tight.

Remark 4.7 If [YM|| < M for all M, then inequality (34) implies that for all 0 > 0

hmsup log E(exp OZ (IXx1)) )

which in finite dimensional case implies that the sequence {n =" ZZ=1 Xk} is exponentially tight.

Proof: Denote S, = > ;1 Xg, S¥ =57 YM, TM =S, — SM. By assumption (and Varadhan’s
Integral Theorem, see e.g. [13, Theorem 4.3.1]), for every bounded continuous F': E — R, the limit

Ly(F) = lim n~'log E(exp(nF(n~'SM)))

n—oo
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exists. We shall show that for bounded above Lipschitz F'(-) the limit

L(F) = lim n 'log E(exp(nF(n~'S,)))

n—oo

exists and L(F) = limps .o, Lps(F). This will end the proof by [13, Theorem 4.4.10].
Since F'(-) is Lipschitz, by Holder’s inequality we have for § > 0

E(exp(nF(n™'8y,))) < E(exp(nF(n™'S;) + C1| T, )

< (E(exp(n(l + 6)F(n~'S3))) Y I (B(exp((1+ 6)C1/6 T, (1)) 0+

Therefore
limsupn ' log E(exp(nF(n~'S,)))

n—oo

. 1 -
lim sup — log B(exp((1 +8)C1/0 > Ik = YD)

1
< ——Lu((1+6)F)+ 153

1+0

Passing to the limit as M — oo we get by (34) with § = (14 6)C4 /4,

1
limsupn ! log E(exp(nF(n™'S,))) < .

n—oo 5

o )
lllén_}&f Ly ((149)F) + mK((l +0)C1/6)

Since Ly ((1 4 6)F) < dsup, F(z) + Ly (F) we now pass to the limit as § — 0, proving that

limsupn ! log E(exp(nF(n™'S,))) < ljién inf Ly (F).
—00

n—oo

The opposite bound

liminf n~'log E(exp(nF(n™'S,))) > limsup Ly (F)

n—oo M—o0o
is produced analogously, starting with

Ch
146

1 _ 1 _
Eexp(mnF(n 1S,]‘L/[)) < Eexp(mnF(n 1Sn) + ||T,]LW||)

a

Proof of Proposition 2.1 : For truncated F(X;), Assumption (a) of Lemma 4.8 follows from [15,
Theorem 2.3].

With b, = Supy,.p)|>r} x72|F(z)|, by Lemma 4.6 we have for all » > r4(6)

n

. 1
lim sup ElogE(eXp(Q Z(lF(XJ)l =) rx;)=ry)) < L(Ob) ,

where L(-) is given by (4). Passing to the limit as r — oo we see that inequality (34) of Lemma 4.8
holds with K () = 1, and by Remark 4.7 the sequence {n~! 2?21 F(X;)} is exponentially tight. O

Proof of Proposition 2.2 : For YM = Xilg|x, )<y, Assumption (a) of Lemma 4.8 follows from
[13, proof of Lemma 6.4.6]. Indeed, it suffices to show that if g : F — R is concave and Lipschitz
(with constant denoted ||g||) and g(0) = 0 then lim,, ., n~*log E(exp(ng(n='S}))) exists. Denote
z, = —log E(exp(ng(n=1SM))). The argument [13, proof of Lemma 6.4.6] shows that

B(&)
T < T + Ty + 20M | g]| — log (1 - veM”“’”(”*’”)W) :
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Also, |z,| < M||g|ln < oo. Therefore, choosing £ = £(n + m) = (n 4+ m)log*™%/?(n + m) by [19],
{n='wz,} has the finite limit.

Inequality (34) of Lemma 4.8 with K () = C follows from the proof of [13, Lemma 6.4.18(a)], see
also [10, (1.1)]. This can be seen as follows. First, notice that by the standard approximation argu-
ment used for each fixed k£ > 1, inequality (9) holds true for any a-integrable r.v. Y;. Indeed, suppose
Y; > 0 are « -integrable and take non-negative bounded YjN 7Y, as N — oo. Then by mono-

tone convergence theorem, E(Y;---Yy) = limy_oo E(Y{Y -+ YY) < CFlimy_oo H?Zl ||YJN||(l =
k
C* i1 1Y la
Let Z;” =X, — Y]M. Then by Holder’s inequality

n nt
E(exp(0)_1Z}'1I)) < E(exp(6 ) |1Z}"[1))
j=1 j=1
< E(exp(t0)y_ | Z}{1)) < C™(E(exp(t0a| Z1"[]))" (35)
j=1

and since E(exp(£0a|X1]))) < oo we have E(exp(f0ca|ZM|)) — 1 as M — oc.

The inequality (35) holds also for arbitrary seminorm in place of || - ||. Therefore, exponential
tightness follows from inequality (35) applied to M = 0 and with the || - || replaced by a seminorm
q: E — [0,00), where ¢(-) is such that ¢~1[0, 1] is compact and E exp(q(X1)) < oo (such seminorm
exists by [12, Theorem 3.1]). Indeed, for § = (fa)~! we have

n~!log P(q(n™'S,) > N) < log C + log(E(exp(£0aq(X,)))) — 6N,

which can be made arbitrarily small by choosing N large enough. O

4.5 Proof of Theorem 2.4

We shall need the following elementary Lemma.
Lemma 4.9 Suppose a is a complex number

(i) Ifla| > 1 then 5=~ Mdz = log |al.

271 J|z|=1

(i) If o] <1 then 2% [, _, *eB=2dz — 0.

z

Proof: Take a suitable analytic branch of the logarithm. Then

(i) If |a| > 1 then ;L log(e=2) 7 — log a.

27i Jz|=1 z

27 z

(if") Tf |a <1 then & [, _, 280424z — 0,

Indeed, since in case (i’) z — log(a — z) is analytic in the unit disc, (i’) follows from the Cauchy
integral formula; (ii’) follows from the fact that for |a| < 1 the mapping z — 1/zlog(1 — a/z) is
analytic at oco.

The formulas given in the statement of the lemma come from taking the real part of the above
complex identities; it is obvious that the integrals in the statement of the lemma are real, since for
z=¢" dz/(iz) = ds. O

The following lemma connects formulas (33) and (13).
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Lemma 4.10 Under the assumption of Theorem 2.4, for y < 1/(2M),y # 0,y 75 aoa" let
1 1
lz]=1

21 z

and let ®(y) be given by (13). Then ®(y) — ®1(y) = C is a constant.
Proof: Since y # 0 and y # %‘;g:, therefore g,(z) can be re-written as the polynomial (with real

coefficients) of degree k = max{p, ¢} in variable z + 1/z; hence equation g,(z) = 0 has exactly 2k
solutions. For y < 5}, equation g,(z) = 0 has no solution of modulus one; therefore there are
exactly k roots (counting multiple roots with their multiplicities) of g,(z) = 0 that have modulus
larger than 1.

Write g, (2) as the polynomial (with real coefficients) in variable z+1/z and let a1 = a1 (y), ..., ar =
ar(y) be the (complex) roots of this polynomial. Thus, noting that g,(z) > 0 when |z| = 1,

k
1 1 +1/2 —a;
‘I’l(y)=C+10g|Uo|+Z—,/ og(lz +1/2—al) .
j:lZﬂ—Z Iz‘ 1

z

For each 1 < j < k, factor the quadratic expression z2+1— a;ztoget z+1/z—a; = M

Since U;V; = 1 and gy( ) has no roots of modulus one, exactly one of the numbers U;, V; has modulus
larger then one and we may assume that the labeling is such that |U;| > 1,1 <j § k. Clearly,

log(|z U| log(|1 V/z|)
D, 1 —_—
(y) = C+og|U0|+Z2m/| e +Z2m/ 2

which ends the proof by Lemma 4.9.0

Proof of Theorem 2.4: Since polynomial p(z) has no complex zeros of modulus one, therefore, see
g. [23, page 38 formula (9)], {X;} has differentiable spectral density

- q(eis) 2
fle) = ’p(eis)

and the Large Deviation Principle follows from Corollary 2.1.
The rate function identification goes as follows. Write

g(=)a(1/2)
1) = ow/z)

where 2z = ¢**. Clearly, 1 — 2yf(s) = #((Zl)/z) and from (4) we have for y < 1/(2M)

L i wl
L) =37 )y 2 B

Therefore for y < 1/(2M),y # 0, y # 35" L (if ¢ = p)

L(y) = —5@1(y) + C

with ®;(-) defined by (36).
By Lemma 4.10

L(y) = —%q)(y) + const, (37)

where ®(-) is defined by (13). Since L(y) is continuous, therefore ®(y) extends to a continuous
function. Since L(0) = 0, we get const = $®(0) and the result follows.O
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4.6 Proof of Proposition 2.3

For f(s) or ||F(s)|| bounded, the CLT follows immediately from Lemmas 4.3 and 4.6 by a simple
complex analysis argument given in [6, Proposition 1]. In general, for every M < oo, we let X; =
Y; + Z; in the continuous time setup and X = Y + Zj in the discrete time setup; in the former
case Y; and Z; are independent, real-valued, centered, separable stationary Gaussian processes with
spectral densities fy,(s) = min(f(s), M) and f.(s) = f(s) — fy(s), while in the latter Y and Zj
are independent, R%valued, centered, stationary Gaussian sequences, with the spectral densities
F,(s) and F,(s) having the same eigenvectors as F(s) but with eigenvalues min(\;(s), M) and
max(A;(s) — M, 0) respectively. Then, in the continuous time setup,

1 T
Wy = — X2 -Y?2 - E(X2-Y) / (Z7 — ))dt + — /YZdt
M \/T/O ( t t ( 0 0 \/> t&t

has mean zero and variance bounded above by ey := 4o(4m [~ f.(s)?ds)'/?, while in the discrete
time setup,

W == % Z(<Xi|Xi> — (Y4|Y3) — E((Xo|Xo) — (Yo Y0))) ,

has zero mean and variance bounded by € := 40 (77! fo% tr(F,(s)?)ds)/2. Note that in both cases
ear — 0as M — oo, hence for every § > 0, by Chebyshev’s inequality P(|Was| > 6) < ear/6% — 0 as
M — oo uniformly in T' (n). Since f,(s) is bounded, \% fOT Y2 — E(Y$))dt is asymptotically normal

N(0,0n0) as T — oo, with oy := (47 f_ 5)%ds) 1/2 monotomcally increasing to ¢ as M — oc.
Similarly, in the discrete time setup, ||F, (s )H is bounded and hence f ZZ (YY) —E((YolYo)))
is asymptotically normal N(0,0p) as n — oo, with oy := (7r*1 " tr (Fy(s))%ds)Y/? /o as

M — oo. The required CLT then follows by the continuity of the normal dlstrlbutlon function. O

4.7 Proof of Proposition 2.4

For y = [yl,yg] define L,(y) = log Eexp({y|S,)). Let R, be the covariance matrix of X =
[X1,...,X,] with A\;(n) denoting the maximal eigenvalue of R,,, I,, denoting the identity matrix,
and e, = [1,1,...,1]. By adapting the calculations of Lemma 4.1 we have for y2 < 1/(2A1(n))

1 _
L,(y) = Ln([o,yg]) + §y%<en|er/2(In - 2y2Rn) 1Rgz/2€n>

(and L, (y) = oo for all other values of y).
Lemma 4.11 If y, < 1/(2M) then

Ly) = 7111_{20 n Ln(y) = L(y2) + 2(1%;;(20])0(0)) ’

with L(y) given by (4), and n=*L,(y) — oo when y» > 1/(2M).

Proof: We have by [18, page 65] that n =1L, ([0, y2]) — L(y2) forallys < 1/(2M) and n= 'L, (y) — oo
for all yo > 1/(2M). Taking yo < 1/(2M) we have by [18, pages 27, 53, 209] that

n_1<en|(1n - 2y2Rn)_1en> - 1/(1 - 2y2f(0)) )

and the proof is completed by noting that 2y2R}/2 I, — 2y2Rn)_1R71«/2 +1I, = (I, — 2»oR,) !
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Proof of Proposition 2.4: Defining L([y1,1/(2M)]) = lim,, ~ ) L(y) and L(y) = oo for yo >
1/(2M), it is easy to check that J(z1,x2) of (14) is the Fenchel-Legendre transform of L(y). The
proof of Gértner-Ellis Theorem in [13, Theorem 2.3.6] then yields the Large Deviation Principle
provided L(y) is steep. To that end, note that for y, < 1/(2M)

OL(y) _ 1 [*  f(s)
A 227r/0 1—2y2f(s)d8

Hence, by the differentiability of f(s) we have 65—;3) — 00 as y2 " 1/(2M) implying that L(y) is
steep (for more details, see the proof of Proposition 2.5). O

4.8 Proof of Proposition 2.5
Let L, (y) = log E(exp({y|S»))) and define n x n-matrix

[ o sy1 ... 3ya 0 ... 0 ]
%Zh Yo .- %yd ;
: 0
Yn=1 1y, ... Yo o - 3Yd
0
. O 0 %yd oo Yoo

Let R, be the covariance matrix of X = [X1,...,X,]". Since (y|S,) = X'Y,, X, by Lemma 4.1 we
have

Lu(y) = —1/2210g(1 = 2X(¥)), (38)

where \;(y) are the eigenvalues of the matrix M,, = Y,,R,, and y is such that max;{\;(y)} < 1/2.

For ii.d. X; we have that R,, is the identity matrix, hence M,, =Y, is the symmetric Toeplitz
matrix corresponding to the ”"signed” bounded spectral density (y|f(s)). In particular, by [18, page
65) fory € D

TEaly) = L) = 3= [ los(1 - 20yt

By [18, pages 38, 44] this relation holds also for y € 9D, i.e. when sup,(y|f(s)) = %, while
n~1L,(y) — oo for all other values of y.

Notice that if ||y|| < 1/(2(d+1)) theny € D. Therefore, in order to establish the Large Deviation
Principle, we need only to verify the steepness condition, i.e.,

lim L =00
UGl

for all yo € 9D, see [13, Theorem 2.3.6]. To this end, fix yo € 9D and let 0 < sy < 27 be such that
(yolf(so)) = 1/2. It suffices to show that

[(yol L' (y))| — o0

asy — yo,y € D. Clearly,

/ L2 (yolf(s))
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Let
I, = {s:(yolf(s)) > 0},
I = {s:(yolf(s)) <0}.

. 1 (yolf(s))
1 — —— L __ds| < .
s | / T a(yfi(s)y ! = el

Since f(s) is differentiable, for each ¢ > 0 there is 6 > 0 such that for |s — sg| < & we have
(yolf(s)) — (yolf(s0))| < €0 and (yolf(s)) > m > 0; i.e. (so —d,s0) C I+ (if so = 0 replace
(so — 0,50) by (s0,50 4+ 9)). Then

Dolf() [ volfle)
/u T alyle(s) @ > /505 T a(y[f(s))

so 1 0
ds >m
so—5 2(yolf(s0) — £(s)) + 2(yo — y[f(s)) 2¢6 +2|[yo — |
Therefore liminfy_,y, (yol|L'(y)) > m/(4me) — ||yol|. Since € > 0 is arbitrary, this ends the proof. O

We have

>m
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