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Abstract

The Large Deviation Principle is derived for several unbounded additive functionals of cen-

tered stationary Gaussian processes. For example, the rate function corresponding to 1
T

∫ T

0
X2

t dt

is the Fenchel-Legendre transform of L(y) = − 1
4π

∫∞
−∞ log(1−4πyf(s))ds, where Xt is a contin-

uous time process with the bounded spectral density f(s). Similar results in the discrete-time
version are obtained for the energy of multivariate Gaussian processes and for the sums of p < 2
powers. Explicit rate functions are obtained in several instances.

1 Introduction

Let E be a separable Banach space. Throughout most of the paper E = R, except in Proposition
2.4, where E = R2, in Proposition 2.5, where E = Rd+1, and in Proposition 2.2, where the general
case is considered.

Suppose Sn, n > 0, are E-valued random variables. We shall say that {n−1Sn} satisfies the
Large Deviation Principle (LDP), if there is a lower semicontinuous rate function I : E → [0,∞],
with compact level sets I−1([0, a]) for all a > 0, and such that

lim inf
n→∞

n−1 logP (n−1Sn ∈ A) ≥ − inf
x∈A

I(x)

for all open subsets A ⊂ E;

lim sup
n→∞

n−1 logP (n−1Sn ∈ A) ≤ − inf
x∈A

I(x)
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for all closed subsets A ⊂ E.
We shall work with the continuous indices n (which below are denoted by T rather than n) as

well as with the discrete n = 1, 2, . . .; in Section 2.3 we shall also consider other normalizations.
For a general stationary process Xj , the Large Deviation Principle for the empirical measures

(i.e., in the discrete time setup corresponding to Sn =
∑n

j=1 δXj ) and the related question for
bounded additive functionals (i.e., Sn =

∑n
j=1 F (Xj), with bounded F (·)) have been studied by a

number of authors under some restriction on dependence; see [13, Section 6.4] for a sample of results,
and [13, Section 6.9 page 280] for relevant references. Gaussian processes were studied in [15], LDP
for Gaussian fields is given in [24], see also [14] for an interesting case.

Large deviations for general unbounded additive functionals of Markov chains under minimal
assumptions were studied e.g. in [22].

Quadratic forms in Gaussian random variables have been studied by various asymptotic methods
e.g. in statistical and electrical engineering literature; for an early paper using the saddle point
method to approximate the distribution for a fixed number of variables, see [21], see also [20]. There
is also a number of papers on the CLT, see e.g. [1], [25] and the references therein. Several results
directly pertinent to the Large Deviation Principle have appeared: [11] gives a version of the Large
Deviation Principle restricted to certain sets and obtained using the Grenander-Szegö method as
employed below (and also in [2] and [8]). Their results however deal with quadratic forms in implicit
way and without explicit expressions for the rate function; [2] presents the heuristic reasoning that
motivated and facilitated much of this paper; in [9], the LDP given as Corollary 2.1 below is stated
under an additional technical assumption; in [7] explicit rate function is found for autoregressive
AR(1) processes.

In this paper, the Large Deviation Principle is derived for several unbounded additive functionals
of stationary centered Gaussian processes that posses spectral density. Of those, quadratic func-
tionals received most attention - for electrical engineering motivation the reader is referred to [8];
motivation from control theory is presented in the introduction to [7]; statistical motivation can be
read out from [11].

The following describes the contents of the paper. In Theorem 2.1 we show that 1
T

∫ T

0
X2

t dt,
where Xt is a continuous time process with the bounded spectral density f(s), satisfies the Large
Deviation Principle and the rate function is given by the Fenchel-Legendre transform of L(y) =
− 1

4π

∫∞
−∞ log(1− 4πyf(s))ds. In Theorem 2.2 we show the corresponding multivariate discrete-time

result. The LDP with normalization of o(n) and the quadratic rate function (corresponding to more
moderate deviations) is derived in Theorem 2.3 for unbounded spectral densities (see [13, Section
3.7] for such results in the context of Cramér’s theorem). In Corollary 2.2 we analyze 1

n

∑n
j=1 |Xj |p

for p < 2; the truncation lemma used in the proof allows also to prove the Large Deviation Principle
for H-mixing sequences, in particular extending a result from [5]. In Section 2.5 we specify the
univariate version of Theorem 2.2 (Corollary 2.1) to ARMA(p,q) processes. Proposition 2.3 points
out the relevance to the CLT. In Section 2.7 we incorporate a non-zero mean in the univariate
version of Theorem 2.2, thus deriving the Large Deviation Principle for the empirical variance. In
Section 2.8 the Large Deviation Principle is derived for the empirical autocorrelation vector of an
i.i.d. process Xj and some counter intuitive results concerning the validity of this LDP when {Xj}
is an AR(1) process are presented. An approach to higher order expansions is sketched in Section
2.9. Examples with explicit rate function are collected in Section 3.

2 Results

This section contains statements of our main results. The proofs are given in Section 4, except for
those results that are marked as immediate consequences of other theorems.
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2.1 Continuous time

Let {Xt} be a real-valued, centered, separable stationary Gaussian process with the covariance
R(t) = E(X0Xt) and spectral density f(s), i.e., R(t) =

∫∞
−∞ eitsf(s)ds.

Denote ST =
∫ T

0
X2

t dt, M = ess sup f(s).

Theorem 2.1 Suppose that {Xt}t≥0 has bounded spectral density function f(s) ∈ L1(R, ds). Then
{ 1

T ST } satisfies the Large Deviation Principle with the rate function

I(x) = sup
−∞<y<1/(4πM)

{xy − L(y)},

where for y < 1/(4πM)

L(y) = − 1
4π

∫ ∞

−∞
log(1− 4πyf(s))ds. (1)

2.2 Discrete time

The following result is the finite-dimensional discrete time version of Theorem 2.1.

Theorem 2.2 Let {Xk}k=1,2,... be a centered, stationary Gaussian Rd-valued sequence with the
spectral density F(s) = [Fi,j(s)] such that ess sup ‖F(s)‖ < ∞ (where ‖F‖ denotes the operator
norm associated with the matrix F, c.f. (28) below). Then for every nonnegative definite symmetric
real matrix W, {n−1

∑n
j=1〈Xj |WXj〉} satisfies the Large Deviation Principle with the rate function

I(x) = sup
−∞<y<1/(2M)

{xy − L(y)},

where M = ess sup ‖W1/2F(s)W1/2‖ and for y < 1/(2M)

L(y) = − 1
4π

∫ 2π

0

log det(I − 2yWF(s))ds. (2)

Remark 2.1 Clearly, Theorem 2.2 implies that the Large Deviation Principle holds also when W
is a nonpositive definite symmetric real matrix. However, in Section 2.8 we give an example of W
that is neither positive definite nor negative definite for which L(y) = ∞ even when all eigenvalues
of 2yWF(s) are uniformly (in s) strictly less than 1.

The following special case of Theorem 2.2 is of interest.

Corollary 2.1 Let {Xk}k=1,2,... be a real-valued, centered, stationary Gaussian process with bounded
spectral density function f(s) and M = ess sup f(s). Then { 1

n

∑n
j=1X

2
j } satisfies the Large Devia-

tion Principle with the rate function

I(x) = sup
−∞<y<1/(2M)

{xy − L(y)}, (3)

where M = ess sup f(s) and for y < 1/(2M)

L(y) = − 1
4π

∫ 2π

0

log(1− 2yf(s))ds. (4)

The following result deals with additive functionals that have finite all exponential moments.

Proposition 2.1 Suppose {Xk}k=1,2,... is a centered, real-valued stationary Gaussian process with
the continuous spectral density f(s) satisfying

∫ 2π

0
log f(s)ds > −∞. Let F : R→ R be a continuous

function such that limr→∞ sup{x:|F (x)|≥r} x
−2|F (x)| = 0. Then { 1

n

∑n
j=1 F (Xj)} satisfies the Large

Deviation Principle.
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The following corollary follows from Corollary 2.1 if p = 2 and from Proposition 2.1 if p < 2.

Corollary 2.2 Suppose that {Xk}k=1,2,... has continuous spectral density satisfying
∫ 2π

0
log f(s)ds >

−∞. If p ≤ 2 then { 1
n

∑n
j=1 |Xj |p} satisfies the Large Deviation Principle.

Remark 2.2 Theorems 2.1 and 2.2 can be also extended to the multivariate index case (Gaussian
random fields on Rk or Zk). Indeed, [18, Chapter 8] develops the relevant abstract results.

2.3 Unbounded spectral density

A suitably modified variant of the Large Deviation Principle holds true also when the spectral density
is unbounded. Namely, taking Sn =

∑n
j=1X

2
j we shall show that for a certain sequence mn → ∞

random variables {mn( 1
nSn − E(X2

1 ))} satisfy the upper and lower bounds with exponent m2
n/n,

i.e.,
− infx∈A◦ I(x) ≤ lim infn→∞

m2
n

n logP (mn( 1
nSn − E(X2

1 )) ∈ A)
≤ lim supn→∞

m2
n

n logP (mn( 1
nSn − E(X2

1 )) ∈ A) ≤ − infx∈Ā I(x),
(5)

where A◦ and Ā denote the interior and the closure of a measurable set A respectively.

Theorem 2.3 Suppose that real-valued, centered stationary Gaussian process {Xj}j≥1 has spectral
density function f(s) ∈ Lq(ds), where 2 < q ≤ ∞. Let {mn}be such that n−1/qmn →∞ (if q = ∞,
assume mn → ∞), and n−1/2mn → 0. Then {mn( 1

nSn − E(X2
1 ))} satisfies the Large Deviation

Principle (5) with the rate function

I(x) =
x2

2σ2
,

where

σ2 =
1
π

∫ 2π

0

f2(s)ds. (6)

Remark 2.3 With minor changes in the statement and in the proof, Theorem 2.3 holds true both
in the multivariate setup of Theorem 2.2 and in the continuous time setup of Theorem 2.1 with the
same I(x), but with (6) replaced by

σ2 = π−1

∫ 2π

0

tr (F(s))2ds (7)

in the former case (taking W = I) and

σ2 = 4π
∫ ∞

−∞
f2(s)ds (8)

in the latter.

2.4 Mixing

The proof of Proposition 2.1 gives also the Large Deviation Principle for unbounded functionals (of
not necessarily Gaussian processes) under mixing conditions.

For a subset C ⊂ N let FC = σ{Xj : j ∈ C}. The following are variants of H-mixing, c.f. [10],
[13].

(H-1) There are C, ` < ∞ and α > 1 such that for k ≥ 1 and all j ≤ k if Yj ≥ 0 are bounded
F[aj ,bj ]-measurable and a1 ≤ b1 ≤ a2 ≤ . . . are such that aj+1 − bj ≥ ` then

|E(
k∏

j=1

Yj)| ≤ Ck
k∏

j=1

‖Yj‖α. (9)
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(H-2) There are C < ∞, 0 ≤ γ < 1, δ > 0 and a non-negative sequence β(n) such that for all n
large enough β(n) ≤ C

n log1+δ n
and for all X ∈ L∞(F[0,k]) and Y ∈ L∞(F[k+`,∞))

|E(XY )− E(X)E(Y )| ≤ γ‖X‖1+β(`)‖Y ‖1+β(`). (10)

Let E be a separable Banach space with norm ‖ · ‖ and Sn =
∑n

j=1 Xj .

Proposition 2.2 Suppose {Xk}k=1,2,... is stationary E-valued, satisfies conditions (H-1) and (H-2)
above, and

E(exp(θ‖X1‖)) <∞

for all θ > 0. Then { 1
nSn} satisfies the Large Deviation Principle.

Recall that ψ-mixing coefficients are defined by

ψ(n) = sup{ |E(XY )− E(X)E(Y )|
E(X)E(Y )

: X ∈ L1(F[0,k]), Y ∈ L1(F[k+n,∞)), X > 0, Y > 0, k ≥ 1}

(this is equivalent to the usual definition that uses indicator functions for X and Y ).

Corollary 2.3 (compare [5, Theorem 2]) Suppose {Xk}k=1,2,... is a stationary sequence of E-
valued random variables with E(exp(θ‖X1‖)) <∞ for all θ > 0 and ψ(n) → 0. Then { 1

nSn} satisfies
the Large Deviation Principle.

Indeed, it is easily seen that under ψ-mixing both (H-1) and (H-2) are satisfied with α = 1, C =
1 + ψ(`), β(n) = 0 and with arbitrary γ > 0.

Remark 2.4 It is known that if ψ(N) < ∞ for some N and {Xj} is ergodic-mixing (or in the
terminology of [5] ψ−(M) > 0), then ψ(n) → 0, see [3].

2.5 Application to ARMA(p,q)

Suppose {Xk}k=1,2,... is an ARMA(p, q) sequence, i.e., {Xk} is the stationary solution of

p∑
i=0

αiXn−i =
q∑

j=0

βjγn−j , (11)

where {γj} are i.i.d. N(0,1) r.v. (Note that sequences {γj} and {Xj} are dependent; in particular,
each γn might depend on the whole trajectory of {Xj})

For z ∈ C define polynomials p(z) =
∑p

i=0 αiz
i and q(z) =

∑q
j=0 βjz

j , where without loss of
generality α0αpβ0βq 6= 0. It is well known (c.f. [23, page 42, Theorem 3]) that if p(·) has no roots
of modulus one, then the stationary solution of (11) exists.

For fixed y ∈ R, such that y 6= 0 if q > p, and y 6= α0αq

2β0βq
if q = p, let

gy(z) = p(z)p(1/z)− 2yq(z)q(1/z). (12)

Denote by U1(y), . . . , Uk(y) the (complex) roots of the equation gy(z) = 0 (in variable z) that
have modulus larger than 1. Here, multiple roots are listed separately and it is easy to see that
k = max{p, q}.

Define

U0(y) = 1 if q < p,

U0(y) = α0αq − 2yβ0βq if q = p,
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U0(y) = y if q > p.

Let M = sups

∣∣∣ q(eis)
p(eis)

∣∣∣. For y < 1/(2M), y 6= 0 (if p < q), y 6= α0αq

2β0βq
(if q = p), let

Φ(y) =
k∑

j=0

log |Uj(y)|. (13)

Theorem 2.4 Suppose that {Xk}k=1,2,... is the stationary solution of (11) and that polynomial p(z)
has no zeros of modulus one. Then { 1

n

∑n
j=1X

2
j } satisfies the Large Deviation Principle. Moreover,

Φ(y) extends continuously to all y < 1/(2M), and the rate function is given by the Fenchel-Legendre
transform of L(y) = 1

2Φ(0)− 1
2Φ(y), i.e.,

I(x) = sup
y<1/(2M)

{xy +
1
2
Φ(y)− 1

2
Φ(0)}.

Remark 2.5 If Uj(y) > 0 are real, one can write

I(x) = −1
2
Φ(0)− 1

2

k∑
j=0

(y
U

′

j (y)
Uj(y)

− logUj(y)),

where y = y(x) is the (unique, since L
′
(·) is increasing) solution of the equation

k∑
j=0

U
′

j (y)
Uj(y)

= −2x.

Thus I(x) =
∑

j Ij(xj), where Ij(·) are the rate functions corresponding to suitable ARMA(1,1) and∑
j xj = x is the ”equal energy” (i.e., I

′

k(xk) = I
′

j(xj)) decomposition of x.

2.6 Normal convergence

Lemmas 4.3 and 4.6 from the proof of the LDP yield the following Central Limit Theorem. At least
in the univariate discrete time setup this result is known, see [1, Theorem 2], [17, Theorem 2] for a
direct proof (for non-normal convergence, see [25]). Related results for more general processes are
given in [4, Theorem 5] and the references therein, c.f. also [23, page 58, Theorem 3].

Proposition 2.3 (i) If {Xt} is a real-valued, centered, separable stationary Gaussian process with
the spectral density f(s) ∈ L2(R, ds)∩L1(R, ds), then 1√

T

∫ T

0
(X2

t −E(X2
0 ))dt is asymptotically

normal N(0, σ) as T →∞ with σ2 given by (8).

(ii) If {Xk}k=1,2,... is a centered, stationary Gaussian Rd-valued sequence with the spectral density
F(s) = [Fi,j(s)], such that tr (F(s))2 is integrable, then

1√
n

n∑
i=1

(〈Xi|Xi〉 − E(〈X1|X1〉))

is asymptotically normal N(0, σ) as n→∞ with σ2 given by (7).
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2.7 Non-centered processes and the LDP for the empirical variance

Many of the results presented above carry over to the case of non-centered stationary Gaussian pro-
cesses by application of the contraction principle. For concreteness, consider the setup of Corollary
2.1, i.e. let {Xj} be a real-valued centered stationary Gaussian process.

The next proposition deals with the Large Deviation Principle (in R2) for the sequence {n−1Sn =
n−1[

∑n
j=1Xj ,

∑n
j=1X

2
j ]′}.

Proposition 2.4 Suppose that spectral density f(·) is differentiable. Then {n−1Sn} satisfies the
Large Deviation Principle with the rate function

J(x1, x2) = I(x2 − x2
1) +

x2
1

2f(0)
, (14)

where I(·) is the rate function given by (3), and if f(0) = 0 then J(x1, x2) = ∞ for x1 6= 0 while
J(0, x2) = I(x2).

Applying the contraction principle (see [13, Theorem 4.2.1]) with respect to the continuous function
g(x1, x2) = x2+2x1µ+µ2 : R2 → R, we see that for a non-centered process Yj = Xj+µ, the sequence
{n−1

∑n
j=1 Y

2
j = g(n−1Sn)} satisfies the Large Deviation Principle (in R) with rate function

J ′(z) = inf
{(x1,x2):z=g(x1,x2)}

J(x1, x2) = sup
y<1/(2M)

{zy − µ2y

1− 2yf(0)
− L(y)} ,

where M = ess sup f(s) and L(y) given by (4), compare also [2, page 361]. Similarly, applying the
contraction principle with respect to the continuous function h(x1, x2) = x2 − x2

1 results with the
empirical variance of {Xj}n

j=1 satisfying the Large Deviation Principle with the rate function I(·)
given by (3) (i.e. the same rate as for {n−1

∑n
j=1X

2
j }).

2.8 The empirical autocorrelation vector

For j ≥ 0, let S(j)
n =

∑n−j
k=1 XkXk+j . Then n−1S

(j)
n is the j-th empirical autocorrelation based on

the sample of size n. For fixed d ≥ 1 let Sn = [S(0)
n , . . . , S

(d)
n ] ∈ Rd+1. If f(·) is the spectral density

of {Xj}, denote
f(s) = [f(s), f(s) cos s, . . . , f(s) cos sd]′ ∈ Rd+1.

Proposition 2.5 Suppose that {Xk}k=1,2,... are i.i.d. N(0,1) random variables. Then { 1
nSn} sat-

isfies the Large Deviation Principle with the rate function

I(x) = sup{〈x|y〉 − L(y) : y ∈ D},

where
D = {y ∈ Rd+1 : sup

0≤s≤2π
〈y|f(s)〉 < 1/2},

and for y ∈ D

L(y) = − 1
4π

∫ 2π

0

log(1− 2〈y|f(s)〉)ds .

Remark 2.6 The proof of Proposition 2.5 (with the same formula for the rate function) extends to
any differentiable spectral density f(s) provided that for all y ∈ D

lim sup
n→∞

n−1 logE(exp(〈y|Sn〉)) <∞ . (15)

However, the example below shows that for d = 1 and for every AR(1) process with 0 < |a| < 1, (15)
is false for some y ∈ D. Hence, in these cases even if { 1

nSn} satisfies the Large Deviation Principle,
the rate function cannot be given by the expression as in Proposition 2.5.
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Example 2.1 Let Xk be an AR(1) process (with β0 = 1, β1 = 0 and 0 < |a| < 1) corresponding
to ri = E[X0Xi] = ai/(1 − a2) for i = 0, 1, . . . and f(s) = 1/(1 + a2 − 2a cos s). Therefore
y = λ[1+a2,−2a]′ ∈ D for every λ < 1/2. Let Rn denote the covariance matrix of X = [X1, . . . , Xn]′

and let Yn be the n× n symmetric Toeplitz matrix corresponding to y0 = λ(1 + a2), y1 = −λa and
yi = 0 for all 1 < i ≤ n − 1. Since R−1

n [r0, . . . , rn−1]′ = [1, 0, . . . , 0]′, we have for λ > (1 − a2)/2
and all n large enough

〈[r0, . . . , rn−1]|(R−1
n − 2Yn)[r0, . . . , rn−1]′〉 = r0 − 2λ(1 + a2)

n−1∑
i=0

r2i + 4λa
n−2∑
i=0

riri+1 < 0 ,

implying that E(exp(λ(1 + a2)S(0)
n − 2λaS(1)

n )) = ∞ (see Lemma 4.1).
Note that the above expression is related to Theorem 2.2. Indeed,

λ(1 + a2)(S(0)
n − γX2

n − (1− γ)X2
1 )− 2λaS(1)

n =
n−1∑
j=1

〈Xj |WγXj〉

where Xj = [Xj , Xj+1]′ ∈ R2 and

Wγ = λ

[
γ(1 + a2) −a

−a (1− γ)(1 + a2)

]
.

Considering λ ≥ 0, Wγ is nonnegative definite iff γ ∈ [a2/(1 + a2), 1/(1 + a2)]. For this range of γ
it follows by applying Lemma 4.6 to Yj = W1/2

γ Xj that for all λ < 1/2,

lim
n→∞

n−1 logE(exp(λ(1 + a2)(S(0)
n − γX2

n − (1− γ)X2
1 )− 2λaS(1)

n )) = −1
2

log(1− 2λ) . (16)

It can also be verified that for every γ > 1/(1+a2) the left side of (16) is infinite for some λ ∈ (0, 1/2),
while the eigenvalues of WγF(s) (which are 0 and λ) are independent of γ.

Remark 2.7 The example shows that the large deviations of the empirical autocorrelation vector
are sensitive to boundary effects (the choice of γ), and that Theorem 2.2 does not extend to matrices
W which are neither nonnegative definite nor nonpositive definite.

2.9 Exact asymptotic

The following result comes essentially form [18, page 76]. Together with saddle point approximation,
it can be used to find higher order asymptotic expansions for probabilities of ”regular enough” sets
in Corollary 2.1. We do not pursue this possibility here.

Proposition 2.6 Suppose {Xk}k≥1 is a centered, real-valued stationary Gaussian sequence with
bounded spectral density f(s) and M = ess sup f(s). Let Sn =

∑n
k=1X

2
k and L(y) be defined by (4).

Then for all y < 1/(2M) the sequence {exp(−nL(y))E(exp(ySn))} is monotonically nonincreasing.
If in addition f(s) is differentiable and for some α > 0 the function f ′(s) is uniformly Lipschitz
continuous with exponent α then

lim
n→∞

exp(−nL(y))E(exp(ySn)) = exp(L(y)− 1
2π

∫ ∫
|z|≤1

|h′y(z)|2dσ),

where

hy(z) =
1
4π

∫ 2π

0

log(1− 2yf(s))
1 + ze−is

1− ze−is
ds ,

and σ(dz) is the surface measure on the unit disc in C.
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3 Examples

Below we collect several examples with explicit rate function.

Example 3.1 (Ornstein-Uhlenbeck process) Suppose Xt is the stationary solution to dXt =
−aXt +

√
adWt, a > 0. The spectral density is f(s) = 1

π
a

a2+s2 . Expression (1) from Theorem 2.1
can be integrated, giving for y < a/4

L(y) =
1
2
a− 1

2

√
a2 − 4ay.

Therefore for x > 0

I(x) =
a

4

(√
x− 1√

x

)2

and I(x) = ∞ otherwise.

Example 3.2 (Narrow-band noise; continuous time) Suppose Xt has spectral density f(s) =
σ2

W for s in a (symmetric about 0) set of Lebesgue measure W and 0 otherwise. By Theorem 2.1 the
Large Deviation Principle holds for T−1ST and for y < W/(4πσ2)

L(y) = −W
4π

log(1− 4πσ2y/W ). (17)

Therefore, for x > 0

I(x) =
W

4π
( x
σ2

− 1− log(
x

σ2
)
)

(18)

and I(x) = ∞ otherwise.

Example 3.3 (Narrow-band noise; discrete time) Suppose Xk has spectral density f(s) = 2πσ2

W
for s in a (symmetric about 0) set of Lebesgue measure W and 0 otherwise. Then by Corollary 2.1
the LDP holds, with L(y) and the rate function I(x) given by (17) and (18), respectively.

Example 3.4 (ARMA(1,1)) Suppose {Xk} solves the recurrence

Xn+1 = aXn + β1γn + β0γn+1,

where {γj} are i.i.d. N(0,1) r.v. and |a| 6= 1.
Then {Xk} is ARMA(1,1) with p(z) = 1− az, q(z) = β0 + β1z and

gy(z) = (1 + a2 − 2y(β2
0 + β2

1))− (a+ 2yβ0β1)(z + 1/z).

Here U0(y) = a+ 2yβ0β1 and

U1(y) =
1 + a2 − 2y(β2

0 + β2
1)

2(a+ 2yβ0β1)

+

√
((1 + a)2 − 2y(β0 − β1)2)((1− a)2 − 2y(β0 + β1)2)

2(a+ 2yβ0β1)
.

Therefore

Φ(y) = log(
1 + a2 − 2y(β2

0 + β2
1)

2

+

√
((1 + a)2 − 2y(β0 − β1)2)((1− a)2 − 2y(β0 + β1)2)

2
)

9



Since Φ(0) = 0 ∨ log a2, we get

L(y) = −1
2

log(
1 + a2 − 2y(β2

0 + β2
1) +

√
((1 + a)2 − 2y(β0 − β1)2)((1− a)2 − 2y(β0 + β1)2)

2(1 ∨ a2)
).

To find the rate function explicitly, one needs to solve the resulting quartic equation and choose its
correct root. Therefore, below we list only special cases when this can be avoided.

(i) Explicit rate function for AR(1), compare [7] (choose β0 = 1, β1 = 0, |a| 6= 1). Then

L(y) = −1
2

log(
1 + a2 − 2y +

√
(1 + a2 − 2y)2 − 4a2

2 ∨ (2a2)
).

and for x > 0

I(x) =
1
2

log
1 +

√
4a2x2 + 1

2x(1 ∨ a2)
+

1
2
(a2 + 1)x− 1

2

√
4a2x2 + 1.

(ii) Explicit rate function for the Moving Average of two r.v.(choose a = 0). Then

L(y) = −1
2

log(
1− 2y(β2

0 + β2
1) +

√
(1− 2y(β0 − β1)2)(1− 2y(β0 + β1)2)

2
)

In particular, if β1 = β0 = 1, we get

L(y) = −1
2

log
1− 4y +

√
1− 8y

2
= log

2
1 +

√
1− 8y

and for x > 0

I(x) =
x

16

√
1 +

16
x

+
x− 8
16

+ log
1 +

√
1 + 16

x

4
.

Example 3.5 (i.i.d. example for Proposition 2.5) Suppose Xi are N(0,1) i.i.d. (i.e., f(s) =
1). Then by Proposition 2.5 the LDP holds for [ 1

n

∑n
k=1X

2
k ,

1
n

∑n−1
k=1 XkXk+1]′. The calculations

done in Example 3.4 give

L(y0, y1) = −1
2

log(
1− 2y0 +

√
(1− 2y0)2 − 4y2

1

2
)

where
D = {(y0, y1) : |y1| < 1/2− y0}.

Therefore one gets the rate function

I(x0, x1) =
x0 − 1

2
+

1
2

log(
x0

x2
0 − x2

1

)

if x0 > 0 and |x1| < x0 (I(x0, x1) = ∞ otherwise).

4 Proofs

We shall need the following well known elementary result.

10



Lemma 4.1 Suppose X = [X1, . . . , Xn]′ is a real valued centered Gaussian vector with the co-
variance matrix R and let M be a symmetric real valued n × n-matrix. Then with λ1, . . . , λn the
eigenvalues of the matrix MR

logE exp(z〈X|MX〉) = −1
2

n∑
j=1

log(1− 2zλj)

for z ∈ C such that maxj{Re(z)λj} < 1/2. Furthermore, logE exp(y〈X|MX〉) = ∞ for y ∈ R such
that maxj{yλj} ≥ 1/2.

With X = R1/2Z and Z a standard multivariate normal, Lemma 4.1 follows by direct integration
of the density of Z.

Lemma 4.2 If {Yj} are i.i.d. r.v. with mean zero, finite second moment and positive probability
density function at 0, then for each θ > 0 there is δ > 0 such that

inf{P (|
∞∑

i=1

kiYi| < θ) :
∑

i

|ki| ≤ 1} ≥ δ.

Proof : Denote σ2 = E(Y 2) and fix the sequence {ki}. Without loss of generality, we may assume
that |ki| ≥ |ki+1| for all i ≥ 1. Note that then the condition

∑
j |kj | ≤ 1 implies that |kj | ≤ 1/j for

all j ≥ 1. Consequently, for every r ≥ 1 by Chebyshev’s inequality we have

P (|
∞∑

i=r

kiYi| < θ) ≥ 1− σ2

θ2

∞∑
j=r

1
j2
. (19)

Note that one can find r0 = r0(θ) such that the right hand side of (19) is strictly positive. Choose
now such r0(θ/2). By independence we have

P (|
∞∑

i=1

kiYi| < θ) ≥ P (|
r0∑

i=1

kiYi| < θ/2)P (|
∞∑

i=r0

kiYi| < θ/2)

and, since |ki| ≤ 1, using (19) we get

P (|
∞∑

i=1

kiYi| < θ) ≥ P ( max
1≤i≤r0

|Yi| < θ/(2r0))P (|
∞∑

i=r0

kiYi| < θ/2)

≥ P (|Y1| < θ/(2r0))r0

1− 4σ2

θ2

∞∑
j=r0

1
j2

 =: δ.

This ends the proof with δ > 0 as defined above.2

4.1 Proof of Theorem 2.1

For complex z with Re(z) < 1
4πM , let LT (z) = logE(exp(zST )).

The following Lemma was motivated by a heuristic argument in [2].

Lemma 4.3 Under the assumptions of Theorem 2.1, for Re(z) < 1
4πM we have

lim
T→∞

1
T
LT (z) = − 1

4π

∫ ∞

−∞
log(1− 4πzf(s))ds.

11



Proof : For T > 0, denote by λj = λj(T ) the eigenvalues of∫ T

0

R(t− s)g(s)ds = λg(t) ∈ L2([0, T ]) (20)

and let ej = ej(t) ∈ L2([0, T ], dt) be the corresponding orthonormal eigenfunctions. Since by
Mercer’s theorem, R(t − s) =

∑
j λjej(t)ej(s) with positive and summable eigenvalues {λj}, we

have the Karhunen-Loéve expansion Xt =
∑

j

√
λjγjej(t), where γj are i.i.d. N(0,1). Note that

sup
j
λj = sup

g∈L2,‖g‖=1

∫ T

0

g(t)dt
∫ T

0

g(u)du
∫ ∞

−∞
ei(t−u)sf(s)ds.

Since for T < ∞ each square-integrable g(·) is integrable, we may switch the order of integration,
which gives

sup
j
λj ≤M

∫ ∞

−∞
|
∫ T

0

g(t)eitsdt|2ds = 2πM, (21)

where the last equality is by Plancherel’s theorem. Therefore Re(z) < 1/(4πM) ≤ 1/(2λj) and

1/T logE[exp(zST )] = −1/(2T )
∞∑

j=1

log(1− 2zλj). (22)

Let µT (dx) = 1/T
∑

j δλj
(dx) be the distribution of the eigenvalues on [0, 2πM ]. Fix z and

choose δ > 0 such that 2|z|δ < 1 and such that {s : 2πf(s) = δ} is of Lebesgue measure zero. By
[18, page 139] for k = 1, 2, . . . we have

lim
T→∞

∫ 2πM

0

xkµT (dx) = (2π)k−1

∫ ∞

−∞
fk(s)ds, (23)

and also for every bounded continuous F (·)

lim
T→∞

∫ 2πM

δ

F (x)µT (dx) =
1
2π

∫
{s:2πf(s)≥δ}

F (2πf(s))ds. (24)

Let Pk(x) be the k-th Taylor polynomial for x 7→ log(1− 2zx). Notice that from (23) and (24), for
each fixed k we get ∫ δ

0

Pk(x)µT (dx) → 1
2π

∫
{s:2πf(s)≤δ}

Pk(2πf(s))ds. (25)

Clearly, for 0 ≤ x ≤ δ we have

|Pk(x)− log(1− 2zx)| = |
∞∑

j=k+1

(2zx)j/j| < 1
k

(2x|z|)k+1

1− 2|z|δ
≤ 1
k

2x|z|
1− 2|z|δ

.

Given ε > 0 choose k > 2|z|(1 − 2|z|δ)−1ε−1. Then by (25) choose T0 = T0(k) such that for all
T > T0 we have

|
∫ δ

0

Pk(x)µT (dx)− 1
2π

∫
{s:2πf(s)≤δ}

Pk(2πf(s))ds| < ε

and by (23) (with k=1) ∫ 2πM

0

xµT (dx) < 2R(0).

12



Enlarging T0 if necessary, by (24) we may also ensure

|
∫ 2πM

δ

log(1− 2zx)µT (dx)− 1
2π

∫
{s:2πf(s)≥δ}

log(1− 4πzf(s))ds| < ε

for all T > T0. Therefore for all T > T0 we have

|
∫ 2πM

0

log(1− 2zx)µT (dx)− 1
2π

∫ ∞

−∞
log(1− 4πzf(s))ds|

≤ |
∫ 2πM

δ

log(1− 2zx)µT (dx)− 1
2π

∫
{s:2πf(s)≥δ}

log(1− 4πzf(s))ds|

+|
∫ δ

0

Pk(x)µT (dx)− 1
2π

∫
{s:2πf(s)≤δ}

Pk(2πf(s))ds|

+ε
∫ 2πM

0

xµT (dx) + ε

∫ ∞

−∞
f(s)ds < (2 + 3R(0))ε.

2

Remark 4.1 By the induced convergence for analytic functions, from Lemma 4.3 it follows that for
y < 1

4πM

T−1 d

dy
LT (y) → d

dy
L(y) =

∫ ∞

−∞

f(s)
1− 4πyf(s)

ds

(this can be also verified directly using [18, page 139]).

Remark 4.2 Let λ1(T ) be the maximal eigenvalue of (20). Then λ1(T ) ≤ 2πM by (21), and
therefore by [18, page 139] one has λ1(T ) → 2πM as T →∞.

Proof of Theorem 2.1: By Remark 4.2 and Lemma 4.1 it follows that L(y) = limT→∞ T−1LT (y) is
infinite for y > 1/(4πM), and by Lemma 4.3 L(y) exists and given by (1) for all y < 1/(4πM). Define
L(1/(4πM)) = limy↗1/(4πM) L(y) (which by monotone convergence coincides with L(1/(4πM)) of
(1)), and note that by the monotonicity of LT (y) with respect to y

lim inf
T→∞, yT→1/(4πM)

T−1LT (yT ) ≥ L(1/(4πM)) . (26)

By [13, Theorem 2.3.6], the result follows immediately if L(1/(4πM)) = ∞, for then (26) holds with
equality, and L(·) is steep, i.e., limy↗1/(4πM)

d
dyL(y) = ∞.

Checking the proof of Gärtner-Ellis Theorem in [13, Theorem 2.3.6] (see also [13, Theorem 4.5.1])
we have the following (even if T−1LT (1/(4πM)) fails to converge).

(a) The upper bound holds on (−∞,∞) with the rate function
I(x) = supy<1/(4πM){xy − L(y)},

(b) Excluding the trivial case of zero spectral density, since L′(y) > 0 is non-decreasing, there is
c > 0 such that L′(y) → c as y ↗ 1/(4πM). Then, the lower bound holds on (−∞, c) with
same rate function I(x).
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Consequently, if L(·) is steep (as is the case for example when f(s) is differentiable), then the
proof of the Large Deviation Principle is complete (even for L(1/(4πM)) <∞). In case L(·) is not
steep, i.e. c <∞, it is simple to check that for x ≥ c the rate function is given by

I(x) =
x

4πM
− L(

1
4πM

).

Therefore to prove the Large Deviation Principle it suffices to establish the lower bound

lim inf
T→∞

1
T

logP (|T−1ST − x| < ε) ≥ −I(x+ ε) (27)

for all x > c and all ε > 0 small enough. Indeed, (27) gives the large deviations lower bound for
small enough open balls centered at x > c. Since I(x) is convex and finite on (0,∞), it is continuous
at x = c and hence the lower bound extends to open balls centered at x = c.

The proof of (27) follows the strategy of T -dependent change of measure as in [13, Exercise
2.3.24].

Let λ1(T ) ≥ λ2(T ) ≥ . . . ≥ λn(T ) ≥ . . . be the eigenvalues of (20) and let

kj =
λj

T (1− 2yTλj)

where yT → 1/(4πM) is such that
∑∞

j=1 kj = x.
To see why such yT exist note that T−1 d

dyLT (y) = T−1
∑

j λj/(1− 2yλj) is monotone in y and
approaches ∞ as y approaches 1/(2λ1). Thus

∑∞
j=1 kj = x has the unique solution yT < 1/(2λ1(T ))

and lim supT yT ≤ 1/(4πM) by Remark 4.2. Moreover, for each fixed y < 1/(4πM), by Remark 4.1
limT T

−1 d
dyLT (y) = d

dyL(y) ≤ c < x; hence yT → 1/(4πM) as claimed.
We take the above sequence yT → 1/(4πM) and do a change of measure via the Radon-Nikodym

derivative
dQT

dP
= exp(yTST − LT (yT )).

For large enough T , we have yT ≥ 0. Therefore

T−1 logP (|T−1ST − x| < ε) = T−1 log(
∫

dP

dQT
1|T−1ST−x|<εdQT )

≥ T−1 logQT (|T−1ST − x| < ε)− (yT (x+ ε)− T−1LT (yT ))

By (26) to end the proof we only need a uniform in T estimate from below on

QT (|T−1ST − x| < ε)

for all ε > 0.
Let VT denote the r.v. (T−1ST −x) under measure QT . Note that by (22) the Laplace transform

of VT for our choice of yT is given by

E[esVT ] =
∞∏

i=1

exp(−ski)/
√

1− ski.

Therefore VT has the representation

VT =
∞∑

j=1

kj(Z2
j − 1)

with Zj i.i.d. normal N(0,1).
The theorem now follows from Lemma 4.2, which we use with Yj = x(Z2

j − 1) and θ = ε. 2
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Remark 4.3 Formally, one might expect that the value of L(1/(4πM)) given by (1) equals the limit
of T−1 logE(exp(ST /(4πM))) as T →∞. Indeed, this is true when L(1/(4πM)) = ∞, but otherwise
it is not clear that the limit even exists and our proof of Theorem 2.1 circumvents this point.

4.2 Proof of Theorem 2.2

Throughout this proof we consider Rn, n ≥ 1 as Hilbert subspaces of `2 with the inherited norms.
For an n× n-matrix A, we consider the usual operator norm

‖A‖ = sup
y∈Rn\0

‖Ay‖
‖y‖

, (28)

and the Hilbert-Schmidt norm
|A| =

√
tr (AA′)

(with the usual convention that A′ is the conjugate transpose of the matrix A). It is well known
that |ABC| ≤ ‖A‖ · |B| · ‖C‖, and that ‖A‖ ≤ |A|, see e.g. [16, Section XI.6]. We shall also use
the elementary bound tr A ≤ n1/2|A| ≤ n‖A‖.

The distribution of the eigenvalues {λ1, . . . , λn} of A is the discrete probability measure

µn(dx) = n−1
n∑

j=1

δλj
(dx)

(either on R or on C, depending on whether A is symmetric, or not).
Consider now two sequences of matrices {An} and {Bn}. The following result is known and a

short proof is enclosed for completeness.

Lemma 4.4 ([18, p 105]) Suppose the n × n matrices An and Bn have the distribution of the
eigenvalues µn and νn respectively and assume that

sup
n

(‖An‖+ ‖Bn‖) <∞, (29)

and
lim

n→∞
n−1|An −Bn|2 = 0. (30)

Then limn→∞ |
∫
xkµn(dx)−

∫
xkνn(dx)| = 0 for every k = 1, 2, . . .

Proof :

|
∫
xkµn(dx)−

∫
xkνn(dx)| = n−1| tr (Ak

n −Bk
n)| ≤ n−1/2|Ak

n −Bk
n|

= n−1/2|
k∑

j=1

Ak−j
n (An −Bn)Bj−1

n |

≤ n−1/2|An −Bn| k max{‖An‖k−1, ‖Bn‖k−1}.
2

Let Rn = cov(X0,Xn) be the d×d-covariance matrices, and consider the block-Toeplitz nd×nd
matrix

An =


R0 R1 . . . Rn−1

R
′

1 R0 . . . Rn−2

...
. . .

...
R

′

n−1 R
′

n−2 . . . R0

 .
Let µn be the distribution of the eigenvalues of An. The asymptotic of µn follows by extending

the argument of [18, page 113] to the d-dimensional matrix case as follows.
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Lemma 4.5 If M = ess sup‖F(s)‖ <∞ then supn ‖An‖ ≤ M . Moreover, for any a < b such that
m(s : λj(s) = a) = m(s : λj(s) = b) = 0 for j = 1, . . . , d,

lim
n→∞

µn([a, b]) = (2πd)−1
d∑

j=1

m(s : a < λj(s) < b) , (31)

where m is Lebesgue measure on [0, 2π] and λ1(s) ≥ λ2(s) ≥ · · ·λd(s) ≥ 0 are the eigenvalues of
F(s) (recall that F(s), 0 ≤ s ≤ 2π, are Hermitian, nonnegative definite matrices).

Proof : For (n− 1)/2 ≥ A ≥ 1 let

Bn,A =



R̂0 R̂1 . . . R̂A 0 . . . 0

R̂
′

1 R̂0 . . . R̂A−1 R̂A
. . . 0

...
. . . . . . . . . 0

R̂
′

A R̂A

0
. . . . . .

...
...

. . . . . . R̂0 R̂1

0 . . . 0 R̂
′

A . . . R̂
′

1 R̂0


be an nd × nd-matrix, where R̂k = (1 − k/A)Rk for k = 0, . . . , A and R̂k = 0 for k > A (with
R̂−k = R̂

′

k). Let Cn,A be the block-circulant matrix associated with Bn,A, defined as follows.

Cn,A =



R̂0 R̂1 . . . R̂A 0 . . . 0 R̂
′

A . . . R̂
′

1

R̂
′

1 R̂0 . . . R̂A−1 R̂A 0
. . .

...
...

. . . . . . . . . . . . R̂
′

A

R̂
′

A

. . . 0

0
. . .

...
...

. . . 0
0 R̂A

R̂A
. . . . . .

...
...

. . . . . . . . . R̂1

R̂1 . . . R̂A 0 . . . 0 R̂
′

A . . . R̂
′

1 R̂0



.

Let FA(s) =
∑A

k=−A e
−iksR̂k, with {λj,k}j=1,...,d denoting the eigenvalues of FA(2πk/n), k =

0, . . . , n−1 and vj,k ∈ Rd the corresponding eigenvectors. The usual argument for circulant matrices
shows that for j = 1, . . . , d, k = 0, . . . , n− 1 the nd-dimensional vectors

(vj,k, e
2πik/nvj,k, . . . , e

2πik(n−1)/nvj,k)

are the linearly independent eigenvectors of Cn,A corresponding to the eigenvalues λj,k; therefore
those are all the eigenvalues of Cn,A. Consequently, ‖Cn,A‖ ≤ sups ‖FA(s)‖ and since

FA(s) =
1
2π

∫ 2π

0

sin2(A(s− t)/2)
A sin2((s− t)/2)

F(t)dt ,
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clearly,

sup
s
‖FA(s)‖ ≤ sup

s
‖F(s)‖ · 1

2π

∫ 2π

0

sin2(At/2)
A sin2(t/2)

dt = M . (32)

We turn now to prove that ‖An‖ ≤ M and ‖Bn,A‖ ≤ M . To this end, fix n, pick xj ∈ Rd and
write x = (xj) as a column vector. Then,

〈x|An x〉 = (2π)−1

∫ 2π

0

〈
n∑

k=1

e−iksxk|F(s)
n∑

m=1

eimsxm〉ds

≤ (2π)−1

∫ 2π

0

‖
n∑

k=1

e−iksxk‖2‖F(s)‖ds

≤ sup
0≤s≤2π

‖F(s)‖( 1
2π

∫ 2π

0

‖
n∑

k=1

e−iksxk‖2ds) = M‖x‖2 .

By a similar argument we have for n > A

〈x|Bn,A x〉 = (2π)−1

∫ 2π

0

〈
n∑

k=1

e−iksxk|FA(s)
n∑

m=1

eimsxm〉ds

≤ ‖x‖2 sup
s
‖FA(s)‖ ≤M‖x‖2 .

This shows that matrices An and Bn,A and Cn,A satisfy (29) for every choice of A ≤ (n− 1)/2.
By applying Parseval’s relation elementwise one has

∞∑
j=−∞

|Rj |2 = (2π)−1

∫ 2π

0

|F(s)|2ds ≤ dM2 .

Since for every n > A we have

n−1|An −Bn,A|2 ≤ 2
A∑

j=1

(j/A)2|Rj |2 + 2
∞∑

j=A+1

|Rj |2 ,

by Kronecker’s Lemma it follows that n−1|An −Bn,A|2 can be made arbitrarily small (uniformly in
n > A) by choosing A large enough. Therefore, by choosing first A large and then n large enough,
we can make sure that (30) holds both for |An −Bn,A| and for |Bn,A −Cn,A| since

|Bn,A −Cn,A|2 ≤ 2A
A∑

j=1

|Rj |2 ≤ AdM2 .

Consequently, by Lemma 4.4 the asymptotic of µn is the same as the asymptotic of the distribution
of the eigenvalues of Cn,A provided we let n→∞ first and then take A→∞.

Fix a positive integer `. In view of the continuity of FA(s) we have for any fixed A ≥ 1

lim
n→∞

n−1
n∑

k=1

tr (FA(2πk/n)`) =
1
2π

∫ 2π

0

tr (FA(s)`)ds .

Also

|(2π)−1

∫ 2π

0

tr (FA(s)` − F(s)`)ds|2 ≤ d(2π)−1

∫ 2π

0

|FA(s)` − F(s)`|2ds
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≤ d`2M2(`−1)(2π)−1

∫ 2π

0

|FA(s)− F(s)|2ds ,

and since,

(2π)−1

∫ 2π

0

|FA(s)− F(s)|2ds = 2
A∑

j=1

(j/A)2|Rj |2 + 2
∞∑

j=A+1

|Rj |2 ,

we have for A→∞ that
∫ 2π

0
tr (FA(s)` − F(s)`)ds→ 0, leading to

lim
A→∞

lim
n→∞

n−1
n∑

k=1

tr (FA(2πk/n)`) =
1
2π

∫ 2π

0

tr (F(s)`)ds .

With the above limit holding for every positive integer `, the limit (31) follows by [18, page 105]. 2

Let Sn =
∑n

j=1〈Xj |Xj〉 and for complex z, let Ln(z) = logE(exp(zSn)).

Lemma 4.6 If sups ‖F(s)‖ = M < ∞, then the limit limn→∞
1
nLn(z) exists for every z in the

half-plane Re z < 1
2M and

lim
n→∞

1
n
Ln(z) = − 1

4π

∫ 2π

0

log det(I − 2zF(s))ds . (33)

Remark 4.4 For d = 1 this lemma is known, see [8, page 105], or [9, Example 3.1 a)].

Proof : Clearly,
Sn = [X1, . . . ,Xn][X1, . . . ,Xn]′.

Therefore by Lemma 4.1, for Re(z) < 1/(2 maxj λj)

n−1Ln(z) = −1/(2n)
nd∑

j=1

log(1− 2zλj),

where {λj} are the eigenvalues of the symmetric nonnegative definite matrix An.
Lemma 4.5 implies that maxj λj = ‖An‖ ≤ M for all n, and by (31) actually ‖An‖ → M as

n→∞. Consequently, (33) follows by applying (31) and observing that

n−1Ln(z) = −d
2

∫ M

0

log(1− 2zx)µn(dx) .

2

Remark 4.5 By the induced convergence for analytic functions, from Lemma 4.6 it follows that for
y < 1/(2M)

n−1 d

dy
Ln(y) → d

dy
L(y) =

1
2π

d∑
j=1

∫ 2π

0

λj(s)
1− 2yλj(s)

ds,

where λj(s), j = 1, . . . , d are the (nonnegative) eigenvalues of F(s). (This claim can also be verified
directly from (31).)
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Proof of Theorem 2.2: For W an identity matrix, the proof repeats the reasoning from the proof of
Theorem 2.1. Indeed, by Lemma 4.6, n−1Ln(y) converges to L(y) of (2) for y < 1/(2M), while by
Lemmas 4.1 and 4.5, for y > 1/(2M)

L(y) = lim
n→∞

n−1Ln(y) = ∞ .

Excluding the trivial case of zero spectral density, notice that L′(y) > 0 is monotonically in-
creasing for y < 1/(2M), and let c > 0 be such that L′(y) → c as y ↗ 1/(2M). Defining
L(1/(2M)) = limy↗1/(2M) L(y), if L(y) is steep, i.e. c = ∞, then the proof of Gärtner-Ellis Theorem
in [13, Theorem 2.3.6] (see also [13, Theorem 4.5.1]) yields the Large Deviation Principle even if
n−1Ln(1/(2M)) fails to converge. If L(·) is not steep then for x ≥ c, the rate function is given
by I(x) = x

2M − L( 1
2M ). Letting {λj} denote the nonnegative eigenvalues of the matrix An, the

n-dependent change of measure via dQn

dP = exp(ynSn − Ln(yn)) results with n−1Sn − x (under Qn)
having the representation

∑nd
j=1 kj(Z2

j −1) with Zj i.i.d. normal N(0, 1) and kj = λj/(n(1−2ynλj)),

where yn < 1/(2maxj λj) chosen such that
∑nd

j=1 kj = x. Since maxj{λj} = ‖An‖ →M as n→∞
it follows by Remark 4.5, that limn yn = 1/(2M) and the proof of the large deviations lower bound
for x > c is completed by applying Lemma 4.2 (note that lim infn n

−1Ln(yn) ≥ L(1/(2M))). For
any W nonnegative definite symmetric real matrix, we have W = W1/2W1/2 with W1/2 also non-
negative symmetric real matrix. Hence 〈Xj |WXj〉 = 〈Yj |Yj〉 for j = 1, 2, . . ., where Yj = W1/2Xj

is a stationary process of bounded spectral density W1/2F(s)W1/2. Therefore, the general case
follows by applying the above proof to the process {Yj}. 2

Remark 4.6 For d = 1, by Lemma 4.1 and [18, pages 38, 44], n−1 logE(exp((2M)−1
∑n

j=1X
2
j ))

converges as n → ∞ to L(1/(2M)) of (4). The validity of this result in the general context of
Theorem 2.2 is not addressed here.

4.3 Proof of Theorem 2.3

The proof is based on the Gärtner-Ellis Theorem (c.f. [13, Theorem 2.3.6 and Remark (a)]) used
with the normalization an = m2

n/n→ 0.
We shall need the following estimate for the maximal eigenvalue of the covariance matrices.

Lemma 4.7 If 1 ≤ q ≤ ∞ then there is C < ∞ such that for all n > 1 if An is the covariance
matrix of [X1, . . . , Xn]′ then ‖An‖ ≤ Cn

1
q .

Proof : Let x = [x1, . . . , xn]′ be such that ‖x‖ = 1 and ‖An‖ = 〈x|Anx〉. Then, denoting 1/p+1/q =
1, we have ‖An‖ = 1

2π

∫ 2π

0
f(s)|

∑
xje

ijs|2ds ≤ ‖f‖q( 1
2π

∫ 2π

0
|
∑
xje

ijs|2pds)1/p ≤ C(
∑
|xj |)(2p−2)/p ≤

Cn1/q.2

Proof of Theorem 2.3: Denote Tn = mn( 1
nSn − EX2

1 ) and as previously, let λj = λj(n), 1 ≤ j ≤ n,
be the eigenvalues of the covariance of X1, . . . , Xn. Since by Lemma 4.7 and the choice of mn

maxj λj/mn → 0, for every y ∈ R and for all n ≥ n0(y) we have

logE exp(nm−2
n yTn) = −ynm−1

n EX2
1 −

1
2

n∑
j=1

log(1− 2yλj/mn) .

Notice that by Taylor’s Theorem for |w| < 1

log(1− w) = −w − (1/2)w2(1− tw)−2,
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where t = t(w) ∈ [0, 1]. This is applied here to wj = 2yλj/mn which by Lemma 4.7 satisfies
supj |wj | → 0 as n → ∞, and hence, |1 − t(wj)wj | → 1 uniformly in 1 ≤ j ≤ n. This shows that
the limit of

m2
nn

−1 logE exp(nm−2
n yTn)

is the same as that of

ymn(n−1
n∑

j=1

λj − E(X2
1 )) + y2n−1

n∑
j=1

λ2
j

Clearly,
∑n

j=1 λj = tr An = nE(X2
1 ), and

n−1
n∑

j=1

λ2
j = n−1 tr A2

n =
n−1∑

k=−(n−1)

(1− |k|/n)r2k =
n−1∑

k=−(n−1)

r2k − 2
n−1∑
k=1

(k/n)r2k

Notice that by Parseval’s identity
∑n−1

k=−(n−1) r
2
k →

∑∞
k=−∞ r2k = σ2/2 as n → ∞. On the other

hand, by Kronecker’s Lemma
∑n−1

k=1(k/n)r2k → 0 as n→∞ leading to

lim
n→∞

m2
nn

−1 logE exp(nm−2
n yTn) =

1
2
y2σ2.

This ends the proof by the Gärtner-Ellis Theorem. 2

4.4 Proof of Propositions 2.1 and 2.2

Let E be a separable Banach space.

Lemma 4.8 Suppose {Xk} are E-valued such that

(a) for every M > 0 there exists an E-valued sequence YM
k such that {n−1

∑n
k=1 YM

k } satisfies the
Large Deviation Principle

(b) for each θ > 0

lim sup
M→∞

lim sup
n→∞

1
n

logE(exp(θ
n∑

k=1

‖Xk −YM
k ‖)) ≤ K(θ) , (34)

and K(θ)/θ → 0 as θ →∞.

Then {n−1
∑n

k=1 Xk} satisfies the Large Deviation Principle if this sequence is exponentially
tight.

Remark 4.7 If ‖YM
k ‖ ≤M for all M , then inequality (34) implies that for all θ > 0

lim sup
n→∞

1
n

logE(exp(θ
n∑

k=1

‖Xk‖)) <∞ ,

which in finite dimensional case implies that the sequence {n−1
∑n

k=1 Xk} is exponentially tight.

Proof : Denote Sn =
∑n

k=1 Xk, SM
n =

∑n
k=1 YM

k , TM
n = Sn−SM

n . By assumption (and Varadhan’s
Integral Theorem, see e.g. [13, Theorem 4.3.1]), for every bounded continuous F : E → R, the limit

LM (F ) = lim
n→∞

n−1 logE(exp(nF (n−1SM
n )))
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exists. We shall show that for bounded above Lipschitz F (·) the limit

L(F ) = lim
n→∞

n−1 logE(exp(nF (n−1Sn)))

exists and L(F ) = limM→∞ LM (F ). This will end the proof by [13, Theorem 4.4.10].
Since F (·) is Lipschitz, by Hölder’s inequality we have for δ > 0

E(exp(nF (n−1Sn))) ≤ E(exp(nF (n−1SM
n ) + C1‖TM

n ‖))

≤ (E(exp(n(1 + δ)F (n−1SM
n ))))1/(1+δ)(E(exp((1 + δ)C1/δ‖TM

n ‖)))δ/(1+δ)

Therefore
lim sup

n→∞
n−1 logE(exp(nF (n−1Sn)))

≤ 1
1 + δ

LM ((1 + δ)F ) +
δ

1 + δ
lim sup

n→∞

1
n

logE(exp((1 + δ)C1/δ
n∑

k=1

‖Xk −YM
k ‖)).

Passing to the limit as M →∞ we get by (34) with θ = (1 + δ)C1/δ,

lim sup
n→∞

n−1 logE(exp(nF (n−1Sn))) ≤ 1
1 + δ

lim inf
M→∞

LM ((1 + δ)F ) +
δ

1 + δ
K((1 + δ)C1/δ)

Since LM ((1 + δ)F ) ≤ δ supx F (x) + LM (F ) we now pass to the limit as δ → 0, proving that

lim sup
n→∞

n−1 logE(exp(nF (n−1Sn))) ≤ lim inf
M→∞

LM (F ).

The opposite bound

lim inf
n→∞

n−1 logE(exp(nF (n−1Sn))) ≥ lim sup
M→∞

LM (F )

is produced analogously, starting with

E exp(
1

1 + δ
nF (n−1SM

n )) ≤ E exp(
1

1 + δ
nF (n−1Sn) +

C1

1 + δ
‖TM

n ‖).

2

Proof of Proposition 2.1 : For truncated F (Xj), Assumption (a) of Lemma 4.8 follows from [15,
Theorem 2.3].

With br = sup{x:|F (x)|≥r} x
−2|F (x)|, by Lemma 4.6 we have for all r ≥ r0(θ)

lim sup
n→∞

1
n

logE(exp(θ
n∑

j=1

(|F (Xj)| − r)I{|F (Xj)|≥r})) ≤ L(θbr) ,

where L(·) is given by (4). Passing to the limit as r →∞ we see that inequality (34) of Lemma 4.8
holds with K(θ) = 1, and by Remark 4.7 the sequence {n−1

∑n
j=1 F (Xj)} is exponentially tight. 2

Proof of Proposition 2.2 : For YM
k = XkI{‖Xk‖≤M}, Assumption (a) of Lemma 4.8 follows from

[13, proof of Lemma 6.4.6]. Indeed, it suffices to show that if g : E → R is concave and Lipschitz
(with constant denoted ‖g‖) and g(0) = 0 then limn→∞ n−1 logE(exp(ng(n−1SM

n ))) exists. Denote
xn = − logE(exp(ng(n−1SM

n ))). The argument [13, proof of Lemma 6.4.6] shows that

xn+m ≤ xn + xm + 2`M‖g‖ − log
(
1− γeM‖g‖(n+m)

β(`)
1+β(`)

)
.
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Also, |xn| ≤ M‖g‖n < ∞. Therefore, choosing ` = `(n + m) = (n + m) log1+δ/2(n + m) by [19],
{n−1xn} has the finite limit.

Inequality (34) of Lemma 4.8 with K(θ) = C follows from the proof of [13, Lemma 6.4.18(a)], see
also [10, (1.1)]. This can be seen as follows. First, notice that by the standard approximation argu-
ment used for each fixed k ≥ 1, inequality (9) holds true for any α-integrable r.v. Yj . Indeed, suppose
Yj > 0 are α -integrable and take non-negative bounded Y N

j ↑ Yj as N → ∞. Then by mono-
tone convergence theorem, E(Y1 · · ·Yk) = limN→∞E(Y N

1 · · ·Y N
k ) ≤ Ck limN→∞

∏k
j=1 ‖Y N

j ‖α =

Ck
∏k

j=1 ‖Yj‖α.
Let ZM

j = Xj −YM
j . Then by Hölder’s inequality

E(exp(θ
n∑

j=1

‖ZM
j ‖)) ≤ E(exp(θ

n∑̀
j=1

‖ZM
j ‖))

≤ E(exp(`θ
n∑

j=1

‖ZM
j` ‖)) ≤ Cn(E(exp(`θα‖ZM

1 ‖)))n (35)

and since E(exp(`θα‖X1‖)) <∞ we have E(exp(`θα‖ZM
1 ‖)) → 1 as M →∞.

The inequality (35) holds also for arbitrary seminorm in place of ‖ · ‖. Therefore, exponential
tightness follows from inequality (35) applied to M = 0 and with the ‖ · ‖ replaced by a seminorm
q : E → [0,∞), where q(·) is such that q−1[0, 1] is compact and E exp(q(X1)) <∞ (such seminorm
exists by [12, Theorem 3.1]). Indeed, for θ = (`α)−1 we have

n−1 logP (q(n−1Sn) > N) ≤ logC + log(E(exp(`θαq(X1))))− θN,

which can be made arbitrarily small by choosing N large enough. 2

4.5 Proof of Theorem 2.4

We shall need the following elementary Lemma.

Lemma 4.9 Suppose a is a complex number

(i) If |a| > 1 then 1
2πi

∫
|z|=1

log(|a−z|)
z dz = log |a|.

(ii) If |a| < 1 then 1
2πi

∫
|z|=1

log(|1−a/z|)
z dz = 0.

Proof : Take a suitable analytic branch of the logarithm. Then

(i’) If |a| > 1 then 1
2πi

∫
|z|=1

log(a−z)
z dz = log a.

(ii’) If |a| < 1 then 1
2πi

∫
|z|=1

log(1−a/z)
z dz = 0.

Indeed, since in case (i’) z 7→ log(a− z) is analytic in the unit disc, (i’) follows from the Cauchy
integral formula; (ii’) follows from the fact that for |a| < 1 the mapping z 7→ 1/z log(1 − a/z) is
analytic at ∞.

The formulas given in the statement of the lemma come from taking the real part of the above
complex identities; it is obvious that the integrals in the statement of the lemma are real, since for
z = eis, dz/(iz) = ds. 2

The following lemma connects formulas (33) and (13).
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Lemma 4.10 Under the assumption of Theorem 2.4, for y < 1/(2M), y 6= 0, y 6= α0αp

β0βq
let

Φ1(y) =
1

2πi

∫
|z|=1

log(gy(z))
z

dz. (36)

and let Φ(y) be given by (13). Then Φ(y)− Φ1(y) = C is a constant.

Proof : Since y 6= 0 and y 6= α0αp

β0βq
, therefore gy(z) can be re-written as the polynomial (with real

coefficients) of degree k = max{p, q} in variable z + 1/z; hence equation gy(z) = 0 has exactly 2k
solutions. For y < 1

2M , equation gy(z) = 0 has no solution of modulus one; therefore there are
exactly k roots (counting multiple roots with their multiplicities) of gy(z) = 0 that have modulus
larger than 1.

Write gy(z) as the polynomial (with real coefficients) in variable z+1/z and let a1 = a1(y), . . . , ak =
ak(y) be the (complex) roots of this polynomial. Thus, noting that gy(z) > 0 when |z| = 1,

Φ1(y) = C + log |U0|+
k∑

j=1

1
2πi

∫
|z|=1

log(|z + 1/z − aj |)
z

dz

For each 1 ≤ j ≤ k, factor the quadratic expression z2+1−ajz to get z+1/z−aj = (z−Uj)(z−Vj)
z .

Since UjVj = 1 and gy(z) has no roots of modulus one, exactly one of the numbers Uj , Vj has modulus
larger then one and we may assume that the labeling is such that |Uj | > 1, 1 ≤ j ≤ k. Clearly,

Φ1(y) = C + log |U0|+
k∑

j=1

1
2πi

∫
|z|=1

log(|z − Uj |)
z

dz +
k∑

j=1

1
2πi

∫
|z|=1

log(|1− Vj/z|)
z

dz,

which ends the proof by Lemma 4.9.2

Proof of Theorem 2.4: Since polynomial p(z) has no complex zeros of modulus one, therefore, see
e.g. [23, page 38 formula (9)], {Xj} has differentiable spectral density

f(s) =
∣∣∣∣q(eis)
p(eis)

∣∣∣∣2
and the Large Deviation Principle follows from Corollary 2.1.

The rate function identification goes as follows. Write

f(s) =
q(z)q(1/z)
p(z)p(1/z)

,

where z = eis. Clearly, 1− 2yf(s) = gy(z)
p(z)p(1/z) and from (4) we have for y < 1/(2M)

L(y) = − 1
4πi

∫
|z|=1

1
z

log(
gy(z)

p(z)p(1/z)
)dz.

Therefore for y < 1/(2M), y 6= 0, y 6= α0αp

β0βq
(if q = p)

L(y) = −1
2
Φ1(y) + C

with Φ1(·) defined by (36).
By Lemma 4.10

L(y) = −1
2
Φ(y) + const, (37)

where Φ(·) is defined by (13). Since L(y) is continuous, therefore Φ(y) extends to a continuous
function. Since L(0) = 0, we get const = 1

2Φ(0) and the result follows.2
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4.6 Proof of Proposition 2.3

For f(s) or ‖F(s)‖ bounded, the CLT follows immediately from Lemmas 4.3 and 4.6 by a simple
complex analysis argument given in [6, Proposition 1]. In general, for every M < ∞, we let Xt =
Yt + Zt in the continuous time setup and Xk = Yk + Zk in the discrete time setup; in the former
case Yt and Zt are independent, real-valued, centered, separable stationary Gaussian processes with
spectral densities fy(s) = min(f(s),M) and fz(s) = f(s) − fy(s), while in the latter Yk and Zk

are independent, Rd-valued, centered, stationary Gaussian sequences, with the spectral densities
Fy(s) and Fz(s) having the same eigenvectors as F(s) but with eigenvalues min(λj(s),M) and
max(λj(s)−M, 0) respectively. Then, in the continuous time setup,

WM :=
1√
T

∫ T

0

(X2
t − Y 2

t − E(X2
0 − Y 2

0 ))dt =
1√
T

∫ T

0

(Z2
t − E(Z2

0 ))dt+
2√
T

∫ T

0

YtZtdt ,

has mean zero and variance bounded above by εM := 4σ(4π
∫∞
−∞ fz(s)2ds)1/2, while in the discrete

time setup,

WM :=
1√
n

n∑
i=1

(〈Xi|Xi〉 − 〈Yi|Yi〉 − E(〈X0|X0〉 − 〈Y0|Y0〉)) ,

has zero mean and variance bounded by εM := 4σ(π−1
∫ 2π

0
tr(Fz(s)2)ds)1/2. Note that in both cases

εM → 0 as M →∞, hence for every δ > 0, by Chebyshev’s inequality P (|WM | > δ) < εM/δ2 → 0 as
M →∞ uniformly in T (n). Since fy(s) is bounded, 1√

T

∫ T

0
(Y 2

t −E(Y 2
0 ))dt is asymptotically normal

N(0, σM ) as T → ∞, with σM := (4π
∫∞
−∞ fy(s)2ds)1/2 monotonically increasing to σ as M → ∞.

Similarly, in the discrete time setup, ‖Fy(s)‖ is bounded and hence 1√
n

∑n
i=1(〈Yi|Yi〉−E(〈Y0|Y0〉))

is asymptotically normal N(0, σM ) as n → ∞, with σM := (π−1
∫ 2π

0
tr (Fy(s))2ds)1/2 ↗ σ as

M →∞. The required CLT then follows by the continuity of the normal distribution function. 2

4.7 Proof of Proposition 2.4

For y = [y1, y2] define Ln(y) = logE exp(〈y|Sn〉). Let Rn be the covariance matrix of X =
[X1, . . . , Xn]′ with λ1(n) denoting the maximal eigenvalue of Rn, In denoting the identity matrix,
and en = [1, 1, . . . , 1]′. By adapting the calculations of Lemma 4.1 we have for y2 < 1/(2λ1(n))

Ln(y) = Ln([0, y2]) +
1
2
y2
1〈en|R1/2

n (In − 2y2Rn)−1R1/2
n en〉

(and Ln(y) = ∞ for all other values of y).

Lemma 4.11 If y2 < 1/(2M) then

L(y) = lim
n→∞

n−1Ln(y) = L(y2) +
y2
1f(0)

2(1− 2y2f(0))
,

with L(y) given by (4), and n−1Ln(y) →∞ when y2 > 1/(2M).

Proof: We have by [18, page 65] that n−1Ln([0, y2]) → L(y2) for all y2 < 1/(2M) and n−1Ln(y) →∞
for all y2 > 1/(2M). Taking y2 < 1/(2M) we have by [18, pages 27, 53, 209] that

n−1〈en|(In − 2y2Rn)−1en〉 → 1/(1− 2y2f(0)) ,

and the proof is completed by noting that 2y2R
1/2
n (In − 2y2Rn)−1R1/2

n + In = (In − 2y2Rn)−1. 2
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Proof of Proposition 2.4: Defining L([y1, 1/(2M)]) = limy2↗1/(2M) L(y) and L(y) = ∞ for y2 >
1/(2M), it is easy to check that J(x1, x2) of (14) is the Fenchel-Legendre transform of L(y). The
proof of Gärtner-Ellis Theorem in [13, Theorem 2.3.6] then yields the Large Deviation Principle
provided L(y) is steep. To that end, note that for y2 < 1/(2M)

∂L(y)
∂y2

≥ 1
2π

∫ 2π

0

f(s)
1− 2y2f(s)

ds .

Hence, by the differentiability of f(s) we have ∂L(y)
∂y2

→ ∞ as y2 ↗ 1/(2M) implying that L(y) is
steep (for more details, see the proof of Proposition 2.5). 2

4.8 Proof of Proposition 2.5

Let Ln(y) = logE(exp(〈y|Sn〉)) and define n× n-matrix

Yn =



y0
1
2y1 . . . 1

2yd 0 . . . 0
1
2y1 y0 . . . 1

2yd
. . .

...
...

. . . . . . 0
1
2yd . . . y0 . . . 1

2yd

0
...

. . . . . .
...

0 . . . 0 1
2yd . . . y0


Let Rn be the covariance matrix of X = [X1, . . . , Xn]′. Since 〈y|Sn〉 = X′YnX, by Lemma 4.1 we
have

Ln(y) = −1/2
n∑

j=1

log(1− 2λj(y)), (38)

where λj(y) are the eigenvalues of the matrix Mn = YnRn and y is such that maxj{λj(y)} < 1/2.
For i.i.d. Xj we have that Rn is the identity matrix, hence Mn = Yn is the symmetric Toeplitz

matrix corresponding to the ”signed” bounded spectral density 〈y|f(s)〉. In particular, by [18, page
65] for y ∈ D

1
n
Ln(y) → L(y) = − 1

4π

∫ 2π

0

log(1− 2〈y|f(s)〉)ds.

By [18, pages 38, 44] this relation holds also for y ∈ ∂D, i.e. when sups〈y|f(s)〉 = 1
2 , while

n−1Ln(y) →∞ for all other values of y.
Notice that if ‖y‖ < 1/(2(d+1)) then y ∈ D. Therefore, in order to establish the Large Deviation

Principle, we need only to verify the steepness condition, i.e.,

lim
y→y0,y∈D

‖L′(y)‖ = ∞

for all y0 ∈ ∂D, see [13, Theorem 2.3.6]. To this end, fix y0 ∈ ∂D and let 0 ≤ s0 ≤ 2π be such that
〈y0|f(s0)〉 = 1/2. It suffices to show that

|〈y0|L′(y)〉| → ∞

as y → y0,y ∈ D. Clearly,

〈y0|L′(y)〉 =
1
2π

∫ 2π

0

〈y0|f(s)〉
1− 2〈y|f(s)〉

ds.
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Let
I+ = {s : 〈y0|f(s)〉 ≥ 0},

I− = {s : 〈y0|f(s)〉 < 0}.

We have

lim sup
y→y0

| 1
2π

∫
I−

〈y0|f(s)〉
1− 2〈y|f(s)〉

ds| ≤ ‖y0‖.

Since f(s) is differentiable, for each ε > 0 there is δ > 0 such that for |s − s0| < δ we have
|〈y0|f(s)〉 − 〈y0|f(s0)〉| < εδ and 〈y0|f(s)〉 ≥ m > 0; i.e. (s0 − δ, s0) ⊂ I+ (if s0 = 0 replace
(s0 − δ, s0) by (s0, s0 + δ)). Then∫

I+

〈y0|f(s)〉
1− 2〈y|f(s)〉

ds ≥
∫ s0

s0−δ

〈y0|f(s)〉
1− 2〈y|f(s)〉

ds

≥ m

∫ s0

s0−δ

1
2〈y0|f(s0)− f(s)〉+ 2〈y0 − y|f(s)〉

ds ≥ m
δ

2εδ + 2‖y0 − y‖

Therefore lim infy→y0 〈y0|L′(y)〉 ≥ m/(4πε)− ‖y0‖. Since ε > 0 is arbitrary, this ends the proof. 2
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