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Large Deviations for Quadratic Functional of
Gaussian Processes1

WJodzimierz Bryc2 and Amir Dembo3

The Large Deviation Principle (LDP) is derived for several quadratic additive
functionals of centered stationary Gaussian processes. For example, the rate
function corresponding to 1 / T S T X 2 d t is the Fenchel-Legendre transform of
L(y)= –(1/4fl) Joo log(1 – 4 n y f ( s ) ) ds, where Xt is a continuous time process
with the bounded spectral density f ( s ) . This spectral density condition is strictly
weaker than the one necessary for the LDP to hold for all bounded continuous
functionals. Similar results are obtained for the energy of multivariate discrete-
time Gaussian processes and in the regime of moderate deviations, the latter
yielding the corresponding Central Limit Theorems.

KEY WORDS: Large deviations; moderate deviations; quadratic additive
functionals; Gaussian processes.

1. INTRODUCTION

Recall that a collection {Zn} of E-valued random variables satisfies the
Large Deviation Principle (LDP) with speed an-»0 and rate function
I: E-> [0, oo], if the level sets I-1([0, b]) are compact for all b<oo,
and
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for all open subsets A C E, while

for all closed subsets ACE.
Throughout most of the paper E = R, except in Proposition 2, where

E=R2 , and in Proposition 3, where E=Rd+1. Unless explicitly stated
otherwise, LDPs in this paper are of speed an = n-1 and we reserve n for
discrete indices n = 1, 2,... using T when working with continuous indices.

For a sample of results and references about the LDP for empirical
measures of stationary processes under some restriction on the dependence
see Refs. 6 and 12 [Sections 6.4 and 6.6].

The LDP for the empirical measures of stationary Gaussian processes
is given in Ref. 15, see also Ref. 22 for the extension to Gaussian fields and
Ref. 14 for an interesting case. The LDP for empirical means of bounded
additive functionals of stationary Gaussian processes is a direct conse-
quence of the results of Ref. 15. By approximation it applies also to func-
tionals of the form \X\P, p < 2.

In this paper, we study the LDP for quadratic functionals of station-
ary centered Gaussian processes that posses spectral density. These func-
tionals receive the most attention in applications—for electrical engineering
motivation, see Ref. 9; motivation from control theory, see Ref. 8; for
statistical motivation, see Ref. 11.

Our main results, Theorems 1 and 2, can not be derived from the
LDP,(15) since the moment generating function of square of a Gaussian
variable is not finite everywhere. The condition of bounded spectral density
in Theorems 1 and 2 is actually strictly weaker than the conditions of
Ref. 15. See Ref. 5 for examples of processes for which these theorems apply
while the LDP of Ref. 15 fails.

The Gartner-Ellis theorem is also not suitable for deriving these
theorems. Indeed, the mere existence of the relevant asymptotic logarithmic
moment generating function at the boundary of its effective domain is not
clear, and moreover, typically this function is not steep. We circumvent
both problems by applying the parameter-dependent change of measure.(13)

The delicacy of this issue is best demonstrated by Example 1, where the
limiting logarithmic moment generating function of an additive R2-valued
quadratic functional of a discrete time Gauss-Markov process is shown to
violate the "prediction" of the Grenander-Szego theory (i.e., (2.4) and
(2.10)). Incidently, this case is not covered by the existing literature of
LDPs for additive functionals of Markov chains.

Previous works overlapping our LDP results have either ignored these
difficulties or added unnecessary restrictive conditions to mitigate them.
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For example, Coursol and Dacunha-Vastelle(11) deals with quadratic forms
in an implicit way and using the Grenander-Szego method obtains a ver-
sion of the LDP restricted to certain sets without explicit expressions for
the rate function; Benitz and Bucklew(2) presents the heuristic reasoning
motivating and facilitating much of our work but without rigorous proofs;
in Ref. 10, the LDP of our Corollary 1 is stated under an additional techni-
cal assumption; in Ref. 8, explicit rate function is found for the special case
of autoregressive AR( 1) processes.

There exist many other works on quadratic forms of Gaussian random
variables. For example, an early paper(20) uses the saddle point method to
approximate the distribution for a fixed number of variables (see also
Ref. 19), while for the Central Limit Theorem (CLT), see Refs. 1, 17, and
23 and the references therein. Analyzing moderate deviations of quadratic
functions of Gaussian processes in Theorem 3, we recover some of these
CLTs as well as a few ones.

Our results are stated in the next section, with proofs provided in
Section 3.

2. RESULTS

The content of this section is as follows. For a continuous time process
X, with bounded spectral density f ( s ) , we show in Theorem 1 that
T-1 STX2 dt satisfies the LDP with the rate function which is the Fenchel-
Legendre transform of L(y) = — 1/4n Soo log(1 – 4 n y f ( s ) ) ds. Theorem 2
provides the corresponding multivariate discrete-time result. For more
moderate deviations, Theorem 3 states LDPs with speed an such that
nan -> oo. The latter LDPs holds also for processes of unbounded spectral
densities with Proposition 1 pointing out their relevance to the CLT. In
Section 2.5, we incorporate a nonzero mean in the univariate version of
Theorem 2, thus deriving the LDP for the empirical variance. Section 2.6
presents the LDP for the empirical autocorrelation vector of an i.i.d. pro-
cess Xj as well as some counter intuitive results concerning the validity of
this LDP when {Xj} is an AR(1) process. An approach to higher order
expansions is sketched in Section 2.7.

2.1. Continuous Time

Let { X t } be a real-valued, centered, separable stationary Gaussian
process with spctral density f ( s ) , i.e., with the covariance R(t) =
E(X 0 X t ) = So oe i t s f(s)ds.

Denote S T =S T X 2 dt , M = ess sup f(s).
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Theorem 1. Suppose that {Xt}t>0 has bounded spectral density
function f ( s ) e L 1 ( R , d s ) . Then { T - 1 S T } satisfies the LDP with the rate
function

where for y < 1 / (4nM)

As an application, suppose that Xi is the Ornstein-Uhlenbeck process,
i.e., the stationary solution to dX t= — a X t + ̂ /adW t , a>0. The spectral
density is f ( s ) = ( 1 / n ) a/(a2 + s2) with M= 1 / (na) . Integrating expression in
(2.2) we get LOO = 1a - 1 Ja2-4ay, leading to I(x) = (a/4)(Jx- 1/Vx)2

for x > 0 and I(x) = oo otherwise.
For the explicit computation of the rate function in other spectral

cases, such as ARMA(p, q) processes, see [Ref. 7, Sections 2.5 and 3].

2.2. Discrete Time

The following result is the finite-dimensional discrete time version of
Theorem 1.

Theorem 2. Let {Xk}k=1 ,2 , . . . be a centered, stationary Gaussian
Rd-valued sequence with the spectral density F(s) = [ F i , j ( s ) ] such that
ess sup ||F(s)|| < oo (where ||F|| denotes the operator norm associated with
the matrix F, c.f. (3.10). Then for every nonnegative definite symmetric real
matrix W, {n-1 Zj=1 <Xj |WXj>} satisfies the LDP with rate function

where M = ess sup ||W1/2F(s) W1/2|| and for y < 1/(2M)

Remark 1. Clearly, Theorem 2 implies that the LDP holds also when
W is a nonpositive definite symmetric real matrix. However, in Section 2.6
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we give an example of W that is neither positive definite nor negative
definite for which L(y) = oo even when all eigenvalues of 2jWF(s) are
uniformly (in s) strictly less than 1.

The following special case of Theorem 2 is of interest.

Corollary 1. Let { X k } k = 1 , 2 , . . . be a real-valued, centered, stationary
Gaussian process with bounded spectral density function f ( s ) . Then
{n-1 Zj=1 Xj} satisfies the LDP with the rate function of (2.3) where here
M = ess supf(s) and

The next corollary follows from Corollary 1 when p = 2 and from
Ref. 15 by an approximation argument when p<2 (consider Ref. 7 [Sec-
tion 4.4] for details).

Corollary 2. Suppose that {Xk}k = 1,2,... has continuous spectral den-
sity satisfying S2n log f ( s ) ds > - oo. If p <2 then {n-1 Zj=1 | Xj|

p} satisfies
the LDP.

Remark 2. Theorems 1 and 2 can also be extended to the multi-
variate index case (Gaussian random fields on Rk or Zk). Indeed, Ref. 18
[Chapter 8] develops the relevant tools for such an extension.

2.3. Unbounded Spectral Density

We next show that the LDP corresponding to more moderate deviations
of Sn = Zj=1 Xj holds true even when the spectral density is unbounded.

Theorem 3. Suppose that the real-valued, centered stationary Gaussian
process {Xj}j>1 has spectral density function f ( s ) e L q ( d s ) for some
2<q<oo. Let {mn} be such that n -1 /qmn->OO while n 1 / 2 m n - > 0 .
Then { m n ( n - 1 S n — E ( X 2 ) ) } satisfies the LDP with speed mn/n and the rate
function
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where

Remark 3. With minor changes in the statement and in the proof,
LDPs of same speed and rate function as in Theorem 3 hold true in the
multivariate setup of Theorem 2 and in the continuous time setup of
Theorem 1 provided (2.1) is modified to

in the former case (taking W = I) and

in the latter.

2.4. Normal Convergence

Lemmas 3 and 6 from the proofs of Theorems 1 and 2, respectively,
yield the following CLTs.

Proposition 1.

(i) If { X t } is a real-valued, centered, separable stationary Gaussian
process with the spectral density f(s)e:L2(iR, ds) nL1(R, ds),
then (1//T) |n' (X2 - E ( X 2 ) ) d t is asymptotically normal N(0,a)
as T-> oo with a2 given by (2.8).

(ii) If {Xk}k = 1,2,... is a centered, stationary Gaussian Rd-valued
sequence with the spectral density F(s) = [ F i , j ( s ) ] , such that
t r ( F ( s ) ) 2 is integrable, then

is asymptotically normal N ( 0 , a) as n -> oo with a2 given by (2.7).

For a direct proof of part ( i i ) in the univariate case (d= 1), see [Ref. 1,
Thm. 2], [Ref. 17, Thm. 2]. For related non-normal convergence, see
[Ref. 23]. Other related results are given in [Ref. 3, Thm. 5] and the
references therein (cf also Ref. 21, Thm. 3, p. 58).
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2.5. Noncentered Processes and the LDP for the Empirical Variance

By the contraction principle much of the preceding results extends to
the case of noncentered stationary Gaussian processes. For example, in the
context of Corollary 1 our starting point is as follows.

Proposition 2. Let {Xj} be a real-valued centered stationary
Gaussian process whose spectral density f ( • ) is differentiable. Let Sn =
[Zj=1Xj, Zj=1Xj]'. Then {n-1Sn} satisfies the LDP (in R2) with the
rate function

where 0/0 : = 0 in (2.9) and I ( • ) is as defined by (2.3) and (2.5).

Applying the contraction principle (see [Ref. 12, Theorem 4.2.1 ]) with
respect to the continuous function g ( x 1 , x2) =x2 + 2x1u +u2: R 2 ->R, we
see that for a noncentered process Yj=XJ+u, the sequence {n-1 Zj=1 Yj}
satisfies the LDP (in R) with rate function

where M = ess sup f(s) and L(y) is given by (2.5) (compare also Ref. 2,
[p. 361]).

Similarly, applying the contraction principle with respect to the con-
tinuous function h ( x 1 , x 2 ) = x2 — x2 results with the empirical variance of
{ X j } j = 1 satisfying the LDP with the same rate function I ( • ) as for
{ n - 1 Z j = 1 X 2 } .

2.6. The Empirical Autocorrelation Vector

For j>0, let S(j) = Z k = 1 XkXk+j. Then n-1S(j) is the jth empirical
autocorrelation based on a sample of size n. For fixed d > 1 let Sn =
[S(0),..., S(d)1] eRd+1. If f ( • ) is the spectral density of {Xj}, denote

Proposition 3. Suppose that { X k } k = 1 , 2 , . . . are i-i-d- N(0, 1) random
variables. Then {n-1Sn} satisfies the LDP (in R d + 1 ) with the rate function



314 Bryc and Dembo

where

and for y e D

Remark 4. The proof of Proposition 3 (with the same formula for the
rate function) extends to any differentiable spectral density f ( s ) provided
that for all yeD

However, the following example shows that for d = 1 and for every AR( 1)
process with 0< |a |< 1, (2.11) is false for some yeD. Hence, in these cases
even if {n-1Sn} satisfies the LDP, the rate function cannot be given by the
same expression as in Proposition 3.

Example 1. Let Xk be an AR(1) process (with fi0=1, /?1 = 0 and
0 < \a\ < 1) corresponding to ri = E [ X 0 X i ] = ai/( 1 - a2) for i = 0, 1,...
and f ( s ) = 1/(1 +a2-2a cos s). Then, y = A [ l + a 2 , -2a]'eD for every
A < 1/2. Let Rn denote the covariance matrix of X = [X1 , . . . , Xn]' and let Yn

be the nxn symmetric Toeplitz matrix corresponding to y0 = A(l + a2),
y1 = —Aa and yi = 0 for all l < i < n — 1 . Since R -1[r0,..., r n - 1 ] '=
[1, 0,..., 0]', we have for A > ( 1 -a2)/2 and all n large enough

implying that E(exp(A(l + a2) S ( 0 ) -2AaS ( 1 ) ) ) = oo (see Lemma 1).
Note that this expression is related to Theorem 2. Indeed,
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where X j=[X j , X j + 1 ] 'e R2 and

Considering A>0, Wy is nonnegative define iff ye [a2/(l +a2), 1/(1 + a2)].
For this range of y it follows by applying Lemma 6 to Yj = W1/2Xj that for
all A < 1/2,

It can also be verified that for every y > ( 1 + a 2 ) the left side of (2.12) is
infinite for some Ae(0, 1/2), while the eigenvalues of WyF(s) (which are 0
and A) are independent of y.

Remark 5. Example 1 shows that the large deviations of the empiri-
cal autocorrelation vector are sensitive to boundary effects (the choice
of y), and that Theorem 2 does not extend to matrices W which are neither
nonnegative definite nor nonpositive definite.

2.7. Exact Asymptotic

The following result comes essentially form Ref. 18 [p. 76]. Together
with saddle point approximation, it can be used to find higher order
asymptotic expansions for probabilities of "regular enough" sets in
Corollary 1. We do not pursue this possibility here.

Corollary 3. Suppose { X k } k > l is a centered, real-valued stationary
Gaussian sequence with bounded spectral density f ( s ) and M =
ess sup f(s). Let Sn = Zk=1 X2 and L(y) be defined by (2.5). Then for all
y < 1 / ( 2 M ) the sequence {exp( – n L ( y ) ) E(exp(ySn))} is monotonically
nonincreasing. If in addition f(s) is differentiable and for some oo>0 the
function f ' ( s ) is uniformly Lipschitz continuous with exponent a then
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where

and a(dz) is the surface measure on the unit disc in C.

3. PROOFS

We start with the following well known elementary result.

Lemma 1. Suppose X = [X1,..., Xn]' is a real valued centered
Gaussian vector with the covariance matrix R and let M be a symmetric
real valued n x n-matrix. Then with A1,..., An the eigenvalues of the matrix
MR

for zeC such that max j{Re(z) Aj} < 1/2. Furthermore, log E exp(y<X |
MX>) = 00 for y e R such that maxj{ yAj} > 1/2.

With X = R1/2Z and Z a standard multivariate normal, Lemma 1
follows by direct integration of the density of Z.

Lemma 2. If { Yj} are i.i.d. random variables with mean zero, finite
second moment and positive probability density function at 0, then for
each 6 > 0 there is 6 > 0 such that

Proof. Denote a2 = E(Y2) and fix the sequence {ki}. Without loss of
generality, we may assume that \ki\ ̂  \ki+1\ for all i^ 1. Note that then the
condition Zj \kj\ ^ 1 implies that \kj\ ^ 1/j for all j^ 1. Consequently, for
every r > 1 by Chebyshev's inequality we have
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Note that one can find r0 = r0(6) such that the right-hand side of (3.1) is
strictly positive. Choose now such r0(6/2). By independence we have

and, since \ki\ < 1, using (3.1) we get

This ends the proof with 5 > 0 as defined. |

3.1. Proof of Theorem 1

Let LT(z) = log E ( e x p ( z S T ) ) for ze C with Re(z) < 1/ (4nM).
The next Lemma is motivated by a heuristic argument in Ref. 2.

Lemma 3. Under the assumptions of Theorem 1, for Re(z)<
1 / ( 4 n M ) we have

Proof. For T>0, denote by Aj = A j ( T ) the eigenvalues of

and let ej = e j ( t ) e L 2 ( [ 0 , T],dt) be the corresponding orthonormal eigen-
functions. Since by Mercer's theorem, R(t — s) = Z j A j e j ( t ) e j ( s ) with
positive and summable eigenvalues {Aj}, we have the Karhunen-Loeve
expansion Xt = Z jx/A jy je j(t)> where yj are i.i.d. N(0, 1). Note that
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A square-integrable g ( . ) is also integrable on [0, T]. Thus, switching the
order of integration, we get

where the last equality is by Plancherel's theorem. Therefore Re(z) <
1/ (4nM) < 1/(2Aj) and

where uT(dx) := 1 / T Z j d A ( d x ) denotes the distribution of the eigenvalues
on [0, 2nM]. Fix z and choose S> 0 such that 2 \ z |S<1 and such that
{s: 2nf(s) = 8} is of Lebesgue measure zero. By Ref. 18 [p. 139] for
k= 1, 2,... we have

and also for every bounded continuous F( • )

Let Pk(x) be the kth Taylor polynomial for xi-»log(1 —2zx). Notice that
from (3.5) and (3.6), for each fixed k we get

Clearly, for 0 < x < d we have
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Given £>0 choose k>2 \z\ (1-2 \z\ d)-1 e-1. Then by (3.7) choose
T0 = T0(k) such that for all T>T0 we have

and by (3.5) (with k =1)

Enlarging T0 if necessary, by (3.6) we may also ensure that for all T>T0,

Therefore for all T>T0 we have

Remark 6. By the induced convergence for analytic funtions, from
Lemma 3 it follows that

for all y < 1 / ( 4 n M ) (this can also be verified directly using Ref. 18
[p. 139]).

Remark 7. Let A 1 ( T ) be the maximal eigenvalue of (3.2). Then
A 1 ( T ) ^ 2 n M by (3.3), and therefore by Ref. 18 [p. 139] one has
A1 ,(T)->2nMas T-» oo.

Proof of Theorem 2.1. By Remark 7 and Lemma 1 it follows that
L(y) = limT->oo T - 1 L T ( y ) is infinite for y>1/ (4nM) . Lemma 3 implies
that L(y) exists and given by (2.2) for y < 1/(4nM). Define L ( 1 / ( 4 n M ) ) : =
l im y s 1 / ( 4 n M ) L(y ) (which by monotone convergence coincides with
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L(1 / (4nM)) of (2.2), and note that by the monotonicity of LT(y) with
respect to y

The required LDP follows by the Gartner-Ellis Theorem (see Ref. 12
[Thm. 2.3.6]) when L ( 1 / ( 4 n M ) ) =oo. Indeed, then (3.8) holds with
equality and c :=limy^1/(4nM) (d/dy) L(y) = co so that L ( - ) is steep.
However, in general this is not the case (and it is not even clear that
T - 1 L T ( 1 / ( 4 n M ) ) converges), so we follow instead the strategy of
parameter dependent change of measure, as outlined in Ref. 13. By the
monotonicity of LT( •) it follows that [Ref. 13, (2.13) and (2.15)] hold true.
Excluding the trivial case of zero spectral density, since L'(y)>0 is non-
decreasing, there is c>0 such that L ' (y)->c as y /*1 / (4nM) . Examining
[Ref. 13, Prop. 2.14] we see that the LDP with the rate function of (2.1)
holds even for L ( 1 / ( 4 n M ) ) < oo as soon as c = oo (i.e., when L( •) is steep).
Turning to deal with c< oo, observe that then I ( • ) of (2.1) is continuous
at x = c and it is easy to check that for x ^ c

Thus, by [Ref. 13, Prop. 2.14], suffices to show that for all x>c and all
e > 0 small enough

in order to complete the proof of the theorem. To this end, let A , ( T ) ^
A2(T) ^ ••• ^A n (T)^ ••• be the eigenvalues of (3.2) and for y < 1/(2A1) let

Since T - 1 ( d / d y ) LT(y) = Z j k j ( y , T) is monotone in y and approaches oo
as y approaches 1 / ( 2A 1 ) , there exists yT< 1/(2A1(T)) such that Zj=1 kj = x
for kj = kj(yT,T). Moreover, for each fixed y<1 / (4nM) , by Remark 1
limT T - 1 ( d / d y ) L(y) = (d/dy) L(y) ^c<x, while lim supT yT^ 1 / ( 4 n M ) by
Remark 2; hence yT —» 1 / (2nM) . For yT as earlier, define the masure QT via
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and let VT denote the random variable ( T - 1 S T — x) under measure QT.
Note that by (3.3) the Laplace transform of VT is given by

where ki = k i ( y T , T). Therefore VT has the representation

with Zj i.i.d. normal N(0, 1). By Lemma 2 we now deduce that
Q T ( \T - 1 S T -x \ <s) ^ S for all £>0 and some 6 = 6(s)>0 which is inde-
pendent of T. Since yT^0 for all large T,

and in the limit T-> co the required lower bound of (3.9) follows from
(3.8). |

3.2. Proof of Theorem 2

Throughout this proof we consider Rn, n ̂  1 as Hilbert subspaces of
l2 with the inherited norms. For an n x n-matrix A, we consider the usual
operator norm

and the Hilbert-Schmidt norm |A| = ^/tr(AA') (with the usual convention
that A' is the conjugate transpose of the matrix A). It is well known
that |ABC|<||A||.|B|.||C||, and that ||A||<|A|, see e.g., [Ref. 16, Sec-
tion XI.6]. The distribution of the eigenvalues {A1,..., An} of A is the
discrete probability measure

(either on R or on C, depending on whether A is symmetric, or not). The
following result is known.
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Lemma 4 ([Ref. 18, p. 105]). Suppose the n x n matrices An and Bn

have the distribution of the eigenvalues un and vn respectively and assume
that

and

Then limn->oo |J xkfin(dx) - \ xkvn(dx)\ = 0 for every k = 1, 2,...
Let Rn = cov(X0, Xn) be the d x d-covariance matrices, and let un be

the distribution of the eigenvalues of the block-Toeplitz nd x nd matrix

Extending the argument of Ref. 18 [p. 113] we next provide the asymptotic
of un.

Lemma 5. If M = ess sup ||F(s)|| < oo then supn ||An|| ^M. Moreover,
for any a<b such that m(s: A j ( s ) = a) = m(s: A j ( s ) = b) = 0 for j=1,..., d,

where m is Lebesgue measure on [0, 2n] and A1(s) ^X2(s) ^ . . .k d(s) ^0 are
the eigenvalues of F ( s ) (recall that F(s), 0^s^2n, are Hermitian, non-
negative definite matrices).

Proof. F o r ( n - 1 ) / 2 ^ A ^ 1 ler Rk = ( 1 - k / A ) R k for k = 0,...,A and
Rk = 0 for k>A, with R-k = R'k. Let Bn,A be the block-Toeplitz nd x nd
matrix constructed as in (3.13) but with the blocks Rk instead of Rk. Let
Cn,A be the block-circulant matrix associated with Bn,A by using the blocks
Rk mod n instead of Rk. Let FA(s) = Z k =_Ae - i k sR k , with {A j , k} j=1 , . . . , d

denoting the eigenvalues of FA(2nk/n), k = 0,...,n — 1 and Vj,k e Rd the
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corresponding eigenvectors. The usual argument for circulant matrices
shows that for j = 1,..., d, k = 0,..., n — 1 the nd-dimensional vectors

are linearly independent eigenvectors of Cn,A corresponding to the eigen-
values k j , k ; therefore those are all the eigenvalues of Cn , A . Consequently,
\\Cn,A\\ < sups ||FA(s)|| and since

clearly,

We turn now to prove that ||An|| <M and ||Bn,A||<M. To this end,
fix n, pick Xj e Rd and write x = (x j) as a column vector. Then,

By a similar argument we have for n > A

This shows that the matrices An, Bn,A and Cn,A satisfy (3.11) for every
choice of A ̂  (n - 1 )/2.

Applying Parseval's relation elementwise one has

860/10/2-4



324 Bryc and Dembo

Since for every n > A we have

by Kronecker's Lemma it follows that n-1 An — B n , A | 2 can be made
arbitrarily small (uniformly in n> A) by choosing A large enough. There-
fore, by choosing first A large and then n large enough, we can make sure
that (3.12) holds both for |An-Bn,A| and for |Bn,A-Cn,A| since

Consequently, by Lemma 4 the asymptotic of un is the same as the
asymptotic of the distribution of the eigenvalues of Cn,A provided we let
n -> oo first and then take A -> oo.

Fix a positive integer /. In view of the continuity of FA(s) we have for
any fixed A^1

Also

and since,

we have for A -» oo that J2n t r ( F A ( s ) ' - F ( s ) ' ) ds -> 0, leading to
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With this holding for every positive integer f, the limit (3.14) follows by
Ref. 18 [p. 105]. |

Lemma 6. If sups ||F(s)|| = M < oo, then for every zeC such that
Re z < 1 / ( 2 M ) ,

Remark 8. For d= 1 this lemma is known, see Ref. 9 [p. 105], or
Ref. 10 [Example 3.1a)].

Proof. Clearly,

Therefore by Lemma 1, for Re(z) < 1/(2 maxj Aj)

where {A j} are the eigenvalues of the symmetric nonnegative definite
matrix An.

Lemma 5 implies that max, Aj= ||A,,|| <M for all n, and by (3.14)
actually ||An||-»M as n->oo. Consequently, (3.16) follows by applying
(3.14) and observing that

Remark 9. By the induced convergence for analytic functions, from
Lemma 6 it follows that for y < 1/(2M)

where A j ( S ) , j = 1,..., d are the (nonnegative) eigenvalues of F(s ) . (This claim
can also be verified directly from (3.14).
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Proof of Theorem 2. For W an identity matrix, the proof repeats the
reasoning from the proof of Theorem 1. Indeed, by Lemma 6, n - 1 L n ( y )
onverges to L(y) of (2.4) for y < 1/(2M), while by Lemmas 1 and 5, for y >
1/(2M)

Excluding the trivial case of zero spectral density, notice that L'(y)>0
is monotonically increasing for y < 1 / ( 2 M ) , and let c>0 be such that
L ' ( y ) - > c as y s 1 / ( 2 M ) . Define L(1/(2M)) = limy s 1 / ( 2 M ) L(y). Since
[Ref. 13, (2.13) and (2.15)] hold by the monotonicity of L n ( • ) , if c= oo,
then L(y) is steep and the LDP with the rate function I ( • ) of (2.3) and
(2.4) follows by [Ref. 13, Prop. 2.14] (even if n - 1 L n ( 1 / ( 2 M ) ) fails to con-
verge). Otherwise, c < oo and I(x) is continuous at x = c with I(x) =
x / ( 2 M ) - L ( 1 / ( 2 M ) ) for all x^c. Letting {Aj} denote the nonnegative
eigenvalues of the matrix An, the n-dependent change of measure via
dQn/dP = exp (y n S n — L n (yn)) results with n-1Sn — x (under Qn) having the
representation Zj=1 k j (Z j - 1) with Zj i.i.d. normal MO, 1) and kj=
k j / ( n ( 1 - 2 y n k j ) ) , where yn< 1/(2 maxjAj) chosen such that Zj=1kj =x.
Since maxj{Aj} = ||An|| ->M as n->oo it follows by Remark 9, that
limn yn = 1/(2M) and the proof of the large deviations lower bound for
x^c is completed by applying Lemma 2 (note that lim infn n - 1 L n ( y n ) ^
L(1 / (2M)) ) . For any W nonnegative definite symmetric real matrix, we
have W = W1/2W1/2 with W1/2 also nonnegative symmetric real matrix.
Hence < X j | W X j > = < Y j | Y j > for j= 1, 2,..., where Yj = W1/2Xj is a
stationary process of bounded spectral density W1/2F{s)W1/2. Therefore,
the general case follows by applying the above proof of the process
{Yj}. I

Remark 10. For d=1, by Lemma 1 and Ref. 18 [pp. 38, 44],
n-1log E(exp((2M)-1Zj=1 X 2 ) ) converges as n->oo to L(1/(2M)) of
(2.5). The validity of this result in the general context of Theorem 2 is not
addressed here.

3.3. Proof of Theorem 3

We first bound the maximal eigenvalue of An—the covariance matrix
of [X1,...,Xn]'.

Lemma 7. If f e L q ( d s ) for 1<q<oo then | ]A n | |<Cn 1 / q for some
C < oo and all n > 1.
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Proof. Let x = [x1,...,xn]' be such ||x|| = 1 and | | A n | | = < x | A n x > .
Then, denoting 1 / p + 1 / q = 1 , we have ||A,,|| = 1/2n \2n f ( s ) |Zx je

i j s |2ds<
| | f | | q ( 1 / 2 n j 2 n l Z x j e

i j s | 2 p d s ) 1 / p < C ( Z | x j | )
( 2 p - 2 ) / p < C n 1 / q . |

Proof of Theorem 3. Let Tn = m n ( n - 1 S n - E X 2 ) and Aj = A j ( n ) , 1^
j <n, denote the eigenvalues of An. Since by Lemma 7 and the choice of mn

max jA j/mn -> 0, for every y e R and all n ^ n0( y) we have

Notie that by Taylor's Theorem for w < 1

where t = t(w)e [0, 1]. This is applied here to wj = 2yAj/mn which by
Lemma 7 satisfies sup j |w j | ->0 as n->oo, and hence, \ 1 — t ( w j ) w j -> 1
uniformly in 1 ̂ j^n. Thus, the limit of

is the same as that of

Clearly, Zj=1 Aj = tr An = nE(X 2 ) , and

Notice that by Parseval's identity Zk=-(n-1) rk->Zk= x rk =a2/2 as
n-> x. On the other hand, by Kronecker's Lemma Zk= 1 ( k / n ) r 2 - > 0 as
n —> x leading to

We complete the proof by applying the Gartner-Ellis Theorem for the
speed an = m n /n->0 (cf. [Ref. 12, Thm. 2.3.6 and Remark (a)]. |
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3.4. Proof of Proposition 1

For f ( s ) or \\F(s)\\ bounded, the CLT follows immediately from
Lemmas 3 and 6 by a simple complex analysis argument given in [ Ref. 4,
Prop. 1]. In general, for every M<oo, we let X, = Yt + Zt in the con-
tinuous time setup and Xk = Yk + Zk in the discrete time setup; in the
former case Yt and Zt are independent, real-valued, centered, separable
stationary Gaussian processes with spectral densities fy(s) = min(f(s), M)
and fz(s)=f(s)—fy(s), while in the latter Yk and Zk are independent,
Rd-valued, centered, stationary Gaussian sequences, with the spectral den-
sities Fy(s) and Fz(s) having the same eigenvectors as F(s) but with eigen-
values ram(Aj(s), M) and max(Aj(s) — M, 0) respectively. Then, in the
continuous time setup,

has mean zero and variance bounded above by sM: = 4a(4n\'^xfz(s)2 ds)1 / 2 ,
while in the discrete time setup,

has zero mean and variance bounded by EM :=4a(n-1 ffi tr(Fz(s)2) ds)lfl.
Note that in both cases £M->0 as M->co, hence for every <5>0, by
Chebyshev's inequality P( \ WM\ > S) < sM/S2 -» 0 as M->oo uniformly in
T(n). Since fy(s) is bounded, 1 / ^ / T ^ ( Y 2 - E ( Y 2 ) ) dt is asymptotically
normal N(0, aM] as T-+ oo, with aM := (4n j^^ fy(s)2 ds) 1 / 2 monotonically
increasing to a as M-> oo. Similarly, in the discrete time setup, ||Fy(s)|| is
bounded and hence 1/,/nZi=1 «Yi | Yi> -E«Y0 | Y0») is asymptoti-
cally normal N(0, aM) as n-> oo, with OM :=(n- 1 \2n tr(Fy(s))2ds)1 /2/ 'ff as
M-> oo. The required CLT then follows by the continuity of the normal
distribution function. |

3.5. Proof of Proposition 2

For y = [y1,y2] define Ln(y) = log E exp«y | Sn». Let Rn be the
covariance matrix of X = [X1, . . . ,Xn] ' with A 1 ( n ) denoting the maximal
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eigenvalue of Rn, In denoting the identity matrix, and en = [ 1, 1,..., 1 ]'. By
adapting the calculations of Lemma 1 we have for y2 < 1/(2A1(n))

(and Ln(y) = oo for all other values of y).

Lemma 8. If y2 < 1/(2M) then

with L(y) given by (2.5), and n - 1 L n ( y ) -» oo when y2 > 1/(2M).

Proof. We have by Ref. 18 [p. 65] that n - 1 L n ( [ 0 , y 2 ] ) ->L(y 2 ) for
all y2 < 1/(2M) and n-1Ln(y) -» oo for all y2 > 1/(2M). Taking y2 < 1/(2M)
we have by Ref. 18 [pp. 27, 53, 209] that

and the proof is completed by noting that 2y 2 R 1 / 2 ( I n -2y 2 R n ) - 1 R 1 / 2 + In

= ( I n - 2 y 2 R n ) - 1 . I

Proof of Proposition 2. Defining L [ y 1 , 1/(2M)]) = limy^1/(2M)L(y)
and L(y) = oo for y2 > 1/(2M), it is easy to check that J ( x 1 , x2) of (2.9) is
the Fenchel-Legendre transform of L(y). Here again, it is easy to check
that conditions [Ref. 13, (2.13) and (2.15)] follow from the monotonicity
of Ln(y) with respect to y2. Hence, suffices to show that L(y) is steep, for
then the LDP with rate function J ( • ) holds by [Ref. 13, Prop. 2.14] (even
if n - 1 L n ( y ) fails to converge for y2= 1/(2M)). To that end, note that for
y 2 < 1 / ( 2 M )

Hence, by the differentiability of f ( s ) we have dL(y)/dy2 -»oo as
y2 /" 1/(2M) implying that L(y) is steep (for more details, see the proof of
Proposition 3). |

3.6. Proof of Proposition 3

Let Ln(y) = log E(exp«y | Sn») and let Yn be the symmetric Toeplitz
nxn-matrix whose first row is (y0, 2y1,..., 2yd, 0,..., 0). Let Rn be the
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covariance matrix of X = [X1,..., Xn]'. Since <y | Sn> =X'YnX, by
Lemma 1 we have

where A j(y) are the eigenvalues of the matrix Mn = YnRn and y is such that
maxj{Aj(y)} < 1/2.

For i.i.d. Xj of unit variance we have that Rn is the identity matrix,
hence Mn = Yn is the symmetric Toeplitz matrix corresponding to the
"signed" bounded spectral density < y | f ( s ) > . In particular, by Ref. 18
[p. 65] for yeD

By Ref. 18 [pp. 38, 44] this relation holds for yedD, i.e., when
sups<y I f(s)) = 2, while n - 1 L n ( y ) -> oo for all other values of y.

Notice that if ||y|| < 1 / ( 2 ( d + 1)) then yeD. Therefore, in order to
establish the LDP, we need only to verify the steepness condition, i.e.,

for all y0E3D see Ref. 12 [Thm. 2.3.6]. To this end, fix y0edD and let
0^s0^2n be such that <y0 | f ( s 0 ) > = 1/2. It suffices to show that
|<y0 |L'(y)>|->oo as y->y0 , yeD. Clearly,

Let I+ = {s: <y0 | f(s)»0}, and I_ = {s: <y0 | f ( s )> <0}. We have

Since f(s) is differentiable, for each e>0 there is <5>0 such that for
|s - s0| <d we have |<y0 f ( s ) > - < y 0 | f(s0))| <ed and <y0 | f(s)y ^ m > 0;
i.e. (s0 - d, s0) c I+ (if s0 = 0 replace (s0 -d, s0) by (s0, S0 + d)). Then
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Therefore lim infy_y 0<y0 | L'(y)> >m/(4ne)-\\y0\\. Taking e->0, this ends
the proof. |
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