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Abstract. We point out that the method of Davis-Mikosch [1] gives for a

symmetric circulant n× n matrix composed of i.i.d. entries with mean 0 and
finite (2 + δ)-moments in the first half-row that the maximum eigenvalue is on

the order
√

2n logn, and the fluctuations are Gumbel.

Let {X0, X1, . . .} be i.i.d. mean-zero, variance 1, random variables. For m ≥ 1,
consider the (2m+ 1)× (2m+ 1) “palindromic” circulant matrix

X0 X1 X2 · · · Xm Xm Xm−1 · · · X1

...
...

...
Xm Xm−1 . . . X0 X1 X2 . . . Xm

...
...

...
X1 X2 X3 · · · Xm Xm−1 Xm−2 · · · X0

 . (1)

In this note, we observe, for circulant matrices (1), that an argument of [1] for the
maximum of periodograms easily applies to deduce that the maximum eigenvalue
is on the order

√
2m logm, and the fluctuations are Gumbel (Theorem 1). In

particular, a sort of “universality” with respect to the entries {Xi}, much discussed
in other contexts in the random matrix literature, is established for the asymptotic
maximum eigenvalue distribution. We refer to [3] for more discussion of random
circulant matrices, and note the result for Gaussian entries is as well given in [3,
Corollary 5].

Theorem 1. Suppose X1, X2, . . . are i.i.d. with E(X1) = 0, E(X2
1 ) = 1, and

E(|X1|s) <∞ for some s > 2. Denote by λm the maximum eigenvalue of (1), and
let am =

√
2 logm− log(4π logm)/

(
2
√

2 logm
)
. Then

lim
m→∞

P

((
λm√

2m+ 1
− am

)√
2 logm ≤ x

)
= G(x)

where G(x) = exp(−e−x).

The proof follows closely the method used to prove [1, Theorem 2.1] which is
based on Einmahl’s multivariate extension of the Komlos-Major-Tusnady theorem
(cf. Lemma 3). Indeed, Lemmas 4, 5 are similar to [1, Lemmas 3.3, 3.4] with
analogous proofs. The well known Bonferroni inequalities (Lemma 2) and Lemma
3 are stated as [1, Lemmas 3.1, 3.2].
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Lemma 2. Let A1, . . . , An be measurable events. Then for every 1 ≤ k ≤ bn/2c,
2k∑
d=1

(−1)d−1Sd ≤ P (A1 ∪ · · · ∪An) ≤
2k−1∑
d=1

(−1)d−1Sd,

where Sd =
∑

1≤j1<···jd≤n P (Aj1 ∩ · · · ∩Ajd).

The next statement is Einmahl’s Corollary 1(b), page 31, in combination with
the Remark on page 32 [2].

Lemma 3. Let ξ1, . . . ξn be independent random vectors in Rd. Assume that the
moment generating function of {ξi} exists in a neighborhood of the origin, and that

cov(ξ1 + · · ·+ ξn) = BnId,

where Bn > 0 and Id is the d dimensional identity matrix. Let ηk be independent
N(0, σ2cov(ξk)) random vectors for 1 ≤ k ≤ n independent of {ξi}, and 0 < σ2 ≤ 1.
Let ξ∗k = ξk + ηk for 1 ≤ k ≤ n, and write p∗n as the density of B−1/2

n
∑n
k=1 ξ

∗
k.

Choose 0 < α < 1/2 such that

α

n∑
k=1

E|ξk|3 exp(α|ξk|) ≤ Bn. (2)

Let

βn = βn(α) = B−3/2
n

n∑
k=1

E|ξk|3 exp(α|ξk|). (3)

If
|x| ≤ c1αB

1/2
n , σ2 ≥ −c2β2

n log βn and Bn ≥ c3α−2, (4)
where c1, c2, c3 are constants depending only on d, then

p∗n(x) = φ(1+σ2)Id
(x) exp(T̄n(x)) with |T̄n(x)| ≤ c4βn(|x|3 + 1), (5)

where φC is the density of the d-dimensional centered Gaussian vector with covari-
ance matrix C and c4 is a constant depending only on d.

Let now {Xj}j≥0 be as in Theorem 1. For j,m ≥ 0, define X̄j = X̄
(m)
j =

Xj1|Xj |≤m1/s − E(X11|X1|≤m1/s).

Lemma 4. We have a.s. that

2√
2m+ 1

max
1≤j≤m

m∑
k=1

cos
( 2πjk

2m+ 1
)
Xk

− 2√
2m+ 1

max
1≤j≤m

m∑
k=1

cos
( 2πjk

2m+ 1
)
X̄

(m)
k = O(m−1/2).

Proof. First, we can add and subtract (2m+ 1)−1/2X̄0 on the left-side. Since

1 + 2
m∑
k=1

cos
( 2πjk

2m+ 1
)

= 0,

we can replace

X̄0 + 2
m∑
k=1

cos
( 2πjk

2m+ 1
)
X̄k
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with

X01|X0|≤m1/s + 2
m∑
k=1

cos
( 2πjk

2m+ 1
)
Xk1|Xk|≤m1/s .

Now, by Borel-Cantelli, as
∑
t P (|Xt| > t1/s) < ∞, we have |Xt| ≤ t1/s for all

t ≥ N(ω) a.s. Then,
m∑
t=1

∣∣Xt −Xt1|Xt|≤m1/s

∣∣ =
m∑
t=1

|Xt|1|Xt|>m1/s

≤
N(ω)∑
t=1

Xt1|Xt|>m1/s +
m∑

t=N(ω)+1

Xt1|Xt|>t1/s

≤
N(ω)∑
t=1

|Xt|1|Xt|>m1/s +
∑

t>N(ω)

Xt1|Xt|>t1/s = 0

for m ≥ max{N(ω), |X1|s, . . . , |XN(ω)|s}. Hence, the sums
m∑
k=1

cos
( 2πjk

2m+ 1
)
Xk and

m∑
k=1

cos
( 2πjk

2m+ 1
)
Xk1|Xk|≤m1/s

agree for all large m a.s.
We finish by noting the extra term

1√
2m+ 1

[X̄0 −X01|X0| ≤ m1/s ] =
1√

2m+ 1
E[X01|X0|≤m1/s ] = O(m−1/2).

�

For d ≥ 1, define vd(t) =
〈

cos
(

2πj1t
2m+1

)
, . . . , cos

(
2πjdt
2m+1

)〉
with respect to distinct

integers 1 ≤ j1, . . . , jd ≤ m. Let also {Nj} be a sequence of i.i.d. N(0, 1) random
variables independent of {Xj}.

Lemma 5. For d ≥ 1, let p̃m be the density of

1√
E[X̄2

1 ](2m+ 1)

[√
2
(
X̄0 + σmN0

)
vd(0) + 2

m∑
k=1

(
X̄k + σmNk

)
vd(k)

]
where σ2

m = E[X̄2
1 ]s2

m. If m−2c5 logm ≤ s2
m ≤ 1 for c5 = 1/2 − (1 − δ)/s > 0 and

some 0 < δ < 1, then, uniformly for |x|3 = o(m1/2−1/s),

p̃m(x) = φ(1+sm)Id
(x)(1 + o(1)).

Proof. Apply Lemma 3 to the centered vectors
√

2X̄0vd(0), 2X̄1vd(1), . . . 2X̄mvd(m)
where, after some calculation,

cov
(√

2X̄0vd(0) + 2X̄1vd(1) + · · ·+ 2X̄mvd(m)
)

= BmId

and

Bm = EX̄2
1

[
2 + 4

m∑
k=1

cos2
( 2πk

2m+ 1
)]

= (2m+ 1)EX̄2
1 .

Choose for a fixed constant c6 > 0,

α̃ = c6m
−1/sd−1/2.
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Note for each 0 ≤ t ≤ m, that

|vd(t)|2 =
d∑
l=1

cos2
( 2πjlt

2m+ 1
)
≤ d.

Then, for large m,

α̃E|
√

2X̄0vd(0)|3 exp{α̃
√

2X̄0vd(0)}+ α̃

m∑
t=1

E|2X̄tvd(t)|3 exp
{
α̃|2X̄tvd(t)|

}
≤ 8d3/2α̃(m+ 1)E|X̄1|3 exp

{
2α̃|X̄1|d1/2

}
≤ 10dc6m1−1/sE|X̄1|3 exp

{
2c6
}

≤ 10dc6 exp{4c6
}
m1−δ/sE|X1|2+δ

where 0 < δ < 1 is chosen so that E|X1|2+δ <∞. Then, (2) holds with α = α̃ for
sufficiently small c6.

Now choose

β̃m = B−3/2
m E|

√
2X̄0vd(0)|3 exp{α̃

√
2X̄0vd(0)}

+B−3/2
m

m∑
t=1

E|2X̄tvd(t)|3 exp
{
α̃|2X̄tvd(t)|

}
≤ 8d3/2B−3/2

m (m+ 1)E|X̄1|3 exp
{

2α̃|X̄1|d1/2
}
.

Then,
β̃m ≤ const(B−3/2

m m1+(1−δ)/sE|X̄1|2+δ) ≤ const(m−c5)
where c5 = 1/2− (1− δ)/s > 0.

Next, we consider (4). We can choose x so that

|x| ≤ c1α̃B
1/2
m ∼ const(m1/2−1/s).

Then, we can choose σ2 = s2
m so that

1 ≥ s2
m ≥ const(m−2c5 logm)

and note
Bm ∼ m ≥ c3α̃

−2 ∼ m2/s.

Noting (5), we have

p̃m = φ(1+s2m)Id
(x) exp

(
T̄m(x)

)
with |T̄m(x)| ≤ c4β̃m(|x|3 + 1).

However, uniformly over |x|3 = o(m1/2−1/s),

|T̄m(x)| ≤ c4β̃m(|x|3 + 1) ≤ const(m1/2−1/s−c5) = const(m−δ/s) = o(1).

�

Proof of Theorem 1. From properties of circulants, we have that the eigenvalues
of (1) are λj = X0 + 2

∑m
k=1 cos

(
2πkj
2m+1

)
Xk for 0 ≤ j ≤ 2m, and also λj = λ2m+1−j

for 1 ≤ j ≤ m. Since m−1/2
√

2 logm→ 0, the variable X0 in the expression for λj
can be replaced by

√
2X̄0. We will also be able to omit the contribution of λ0 to

the maximum. By Lemma 4, it will be enough to prove√
2 logm

[ √2X̄0√
2m+ 1

+ max
1≤j≤m

2√
2m+ 1

m∑
k=1

cos
( 2πjk

2m+ 1
)
X̄k − am

]
⇒ G. (6)
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To this end, let σ2
m = E[X̄2

1 ]s2
m = E[X̄2

1 ]m−2c5 logm. We first show√
2 logm

[ √2(X̄0 + σmN0)√
E[X̄2

1 ](2m+ 1)
(7)

+ max
1≤j≤m

2√
E[X̄2

1 ](2m+ 1)

m∑
k=1

cos
( 2πjk

2m+ 1
)
(X̄k + σmNk)− am

]
⇒ G.

For 1 ≤ j ≤ m, let

λX̄+N
j =

1√
E[X̄2

1 ](2m+ 1)

[√
2(X̄0 + σmN0) + 2

m∑
k=1

cos
( 2πjk

2m+ 1
)
(X̄k + σmNk)

]
.

Since 1− e−e−u

=
∑∞
d=1(−1)d−1(e−du/d!), by Lemma 2, (7) will follow from the

statement

P
(
λX̄+N
j1

> am +
u√

2 logm
, . . . , λX̄+N

jd
> am +

u√
2 logm

)
= m−d exp(−du)(1 + o(1)) (8)

uniformly over the d-tuples 1 ≤ j1 < · · · < jd ≤ m for each d ≥ 1 as m ↑ ∞.
Let Adm denote the event in the probability on the left-side. Then, noting s2

m =
m−2c5 logm, ∫

Ad
m

φ(1+s2m)Id
(x)dx = m−d exp{−du}(1 + o(1))

as m ↑ ∞. Note that we can neglect the parts in (8) when there is l ≤ d such that

|λX̄+N
jl

|3 > m1/2−1/s−ε

for a small ε > 0. Indeed, given d ≥ 1 and s > 2 choose 0 < ε < 1/2 − 1/s and
γ > 2 such that γ(1/2− 1/s− ε) > d+ 1. Note also 1/2 ≤ E[X̄2

1 ] ≤ 2 for m large
enough. Then, by Rosenthal’s inequality there is a constant C(γ) such that

P

∣∣∣∣∣√2X̄0 + 2
m∑
k=1

cos
( 2πjlk

2m+ 1
)
X̄k

∣∣∣∣∣
3

> m2−1/s−ε


≤ C(γ)

mγ(2−1/s−ε)

( m∑
k=0

E|X̄k|2
)3γ/2

+mE|X̄1|3γ


≤ C(γ)
(

2
mγ(1/2−1/s−ε) +

m

mγ(2−4/s−ε)

)
= o(m−d).

On the other hand, also

P

∣∣∣∣∣
√

2N0√
2m+ 1

+
2√

2m+ 1

m∑
k=1

cos
( 2πjlk

2m+ 1
)
σmNk

∣∣∣∣∣
3

> m1/2−1/s−ε

 = o(m−d).

We conclude by Lemma 5 (which does not depend on the choice of j1, . . . , jd) that
(8) holds.
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To deduce (6), note E[X̄2
1 ]→ E[X2

1 ] = 1, and
√

2σmN0√
2m+ 1

− max
1≤j≤m

2√
2m+ 1

m∑
k=1

cos
( 2πjk

2m+ 1
)
(−σmNk)

≤
√

2(X̄0 + σmN0)√
2m+ 1

+ max
1≤j≤m

2√
2m+ 1

m∑
k=1

cos
( 2πjk

2m+ 1
)
(X̄k + σmNk)

−
√

2X̄0√
2m+ 1

− max
1≤j≤m

2√
2m+ 1

m∑
k=1

cos
( 2πjk

2m+ 1
)
X̄k

≤
√

2σmN0√
2m+ 1

+ max
1≤j≤m

2√
2m+ 1

m∑
k=1

cos
( 2πjk

2m+ 1
)
σmNk. (9)

Let (2m + 1)1/2λNj =
√

2σmN0 + 2
∑m
k=1 cos

(
2πjk/2m + 1

)
σmNk for 1 ≤ j ≤ m.

One can calculate that that {λNj }mj=1 are i.i.d. N(0, σ2
m) variables.

Hence, to finish, the bounds (9) correspond to the maximum of m i.i.d. N(0, σ2
m)

random variables, well known to be on order σm
√

2 logm ∼ m−c5 logm → 0 in
probability. �
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