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ON THE MAXIMUM CORRELATION COEFFICIENT∗

W. BRYC† , A. DEMBO‡ , AND A. KAGAN§

Abstract. For an arbitrary random vector (X,Y ) and an independent random variable Z it is
shown that the maximum correlation coefficient between X and Y + λZ as a function of λ is lower
semicontinuous everywhere and continuous at zero where it attains its maximum. If, moreover, Z
is in the class of self-decomposable random variables, then the maximal correlation coefficient is
right continuous, nonincreasing for λ ≥ 0 and left continuous, nondecreasing for λ ≤ 0. Independent
random variables X and Z are Gaussian if and only if the maximum correlation coefficient between X
and X+λZ equals the linear correlation between them. The maximum correlation coefficient between
the sum of n arbitrary independent identically distributed random variables and the sum of the

first m < n of these equals
√

m/n (previously proved only for random variables with finite second

moments, where it amounts also to the linear correlation). Examples provided reveal counterintuitive
behavior of the maximum correlation coefficient for more general Z and in the limit λ → ∞.
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1. Introduction and statement of results. The maximum correlation coefficient
between two random elements ξ, η introduced in [6, 5] is

ρ(ξ, η) = sup
{

corr
(
ϕ(ξ), ψ(η)

)
: 0 < E

∣∣ϕ(ξ)
∣∣2 < ∞, 0 < E

∣∣ψ(η)
∣∣2 < ∞

}
,(1)

where corr(X,Y ) is the classical (Pearson) correlation between random variables X and Y .
Definition (1) is equivalent to

ρ(ξ, η) = supE
{
ϕ(ξ)ψ(η)

}
,(2)

where the supremum in (2) is taken over all ϕ,ψ with

Eϕ(ξ) = Eψ(η) = 0, E
∣∣ϕ(ξ)

∣∣2 = E
∣∣ψ(η)

∣∣2 = 1.(3)

Geometrically, ρ(ξ, η) equals the cosine of the angle between the subspaces (of a larger
Hilbert space L2(ξ, η)), L2(ξ) = {ϕ(ξ) : Eϕ = 0, E|ϕ|2 < ∞}, and L2(η) = {ψ(η) : Eψ = 0,
E|ψ|2 < ∞}. Another well-known interpretation of ρ is as the operator norm of the condi-
tional expectation ϕ �→ E(ϕ(ξ) | η) acting on the closed subspace of L2 consisting of functions
orthogonal to constants. Thus

ρ2(ξ, η) = sup
{
E
{∣∣E(ϕ(ξ)|η)

∣∣2} : Eϕ(ξ) = 0, E
∣∣ϕ(ξ)

∣∣2 = 1
}
.(4)

The main role of ρ(ξ, η) is that of a convenient numerical measure of dependence be-
tween ξ and η. In particular, ρ(ξ, η) vanishes if and only if ξ and η are independent.

Explicit formulas for ρ(ξ, η) are available in very few cases. If (X,Z) is a bivariate
Gaussian vector, then

ρ(X,Z) =
∣∣corr(X,Z)

∣∣(5)
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(for a proof see, for example, [7]).
If X = X1 + · · · + Xm, Z = X1 + · · · + Xn, m � n, where X1, . . . , Xn are independent

identically distributed, nondegenerate random variables with finite second moment, then the
maximum correlation between X and Z is

ρ(X,Z) =
√
mn−1(6)

(see [4]) and, thus, does not depend on the distribution of Xi. In Corollary 1 below, we show
that (6) applies also for any independent identically distributed, nondegenerate random
variables Xi. There are a few other isolated cases when ρ(X,Y ) is known in an explicit
form. Different properties of the maximum correlation were studied in [11, 12, 9, 3, 1].

If X,Y, Z are Markov-dependent, then it is easy to see that

ρ(X,Y ) � ρ(X,Y + Z).(7)

Indeed, since L2(Y + Z) ⊂ L2(Y, Z), one has

ρ
(
X, (Y, Z)

)
� ρ(X,Y + Z).

From Markov property E(ϕ(X) |Y, Z) = E(ϕ(X) |Y ), which by (4) implies the well-known
formula

ρ(X,Y ) = ρ
(
X, (Y, Z)

)
(cf. the proof of Lemma 1 in [10, p. 207]). Thus (7) follows.

If bivariate random vectors (X1, Y1) and (X2, Y2) are independent, then

max
{
ρ(X1, Y1), ρ(X2, Y2)

}
� ρ(X1 + X2, Y1 + Y2).(8)

This follows from the fact that ρ(X1 + X2, Y1 + Y2) � ρ((X1, X2), (Y1, Y2)) and from the
Csáki–Fisher identity

ρ
(
(X1, X2), (Y1, Y2)

)
= max

{
ρ(X1, Y1), ρ(X2, Y2)

}
;

see Theorem 1 in [13]. Inequality (8) yields two implications in the same spirit as (7).
(i) If (X ′, Y ′) is an independent copy of (X,Y ), then

ρ(X,Y ) � ρ(X + X ′, Y + Y ′).(9)

(ii) If (X,Y ) is an arbitrary bivariate random vector and Z1, Z2 are independent of each
other and of (X,Y ), then

ρ(X,Y ) � ρ(X + Z1, Y + Z2).

We prove in this paper the following general properties of ρ(X,Y + λZ).
Theorem 1. The function λ �→ ρ(X,Y + λZ) is lower semicontinuous in λ for any

random variables X,Y, Z. In particular, if Z is independent of the pair (X,Y ), then ρ(X,Y +
λZ) is continuous at λ = 0.

A random variable Z is in L if for any c, 0 < c < 1, there exists a random variable Uc

independent of Z such that

Z is equidistributed with cZ + Uc.(10)

Equivalently, a real-valued random variable Z belongs to the class L if its characteristic
function f(t) = EeitZ , t ∈ R, possesses the following property: for any c, 0 < c < 1, there
exists a characteristic function fc(t) such that

f(t) = f(ct) fc(t), t ∈ R.(11)

The random variables in L are called self-decomposable. All random variables in L are
infinitely divisible. Necessary and sufficient conditions (in terms of Lévy functions) are
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known for an infinitely divisible random variable to belong to L (see [8, Chap. 5]). In
particular, all random variables having stable distributions are in L.

We next detail additional properties of ρ(X,Y + λZ) in case when Z is independent
of (X,Y ) and belongs to the class L.

Theorem 2. If a random variable Z ∈ L is independent of a bivariate random vec-
tor (X,Y ), then λ �→ ρ(X,Y + λZ) is a nonincreasing right continuous function on [0,∞)
and a nondecreasing left continuous function on (−∞, 0].

The above results hold for random elements X,Y, Z taking values in an arbitrary sepa-
rable Banach space; the proofs remain the same.

The following theorem is a converse of (5) holding when X and Z are Gaussian.

Theorem 3. If X and Z are independent, nondegenerate, square-integrable real-valued
random variables such that for every real λ

ρ(X,X + λZ) = corr(X,X + λZ),(12)

then X and Z are Gaussian.

Dembo, Kagan, and Shepp [4] show that equality (12) may hold true for a fixed λ �= 0
with independent, nondegenerate square-integrable non-Gaussian X and Z; see (6).

Our following result provides the value of ρ(X,X + λZ) in case both X and Z are
symmetric α-stable random variables.

Theorem 4. Suppose X and Z are independent copies of an α-stable random variable
α ∈ (0, 2]. Then

ρ(X,X + λZ) =
1√

1 + |λ|α
(13)

for all λ � 0. If X and Z are symmetric, equality (13) holds also for λ < 0.

The following lemma, which is key to the proof of Theorem 4, is of independent interest.

Lemma 1. Suppose X and Y are nondegenerate independent random variables with
characteristic functions ϕX(t) and ϕY (t) such that

lim inf
t→0

1 − |ϕY (t)|2
1 − |ϕX(t)|2 = c.(14)

Then

ρ(X,X + Y ) � 1√
1 + c

.(15)

Suppose Xj are independent identically distributed, nondegenerate random variables
with characteristic function ϕ(t) (possibly with infinite second moment). The indepen-
dent random variables X =

∑m

j=1
Xj and Y =

∑n

j=m+1
Xj have characteristic functions

ϕX(t) = ϕm(t) and ϕY (t) = ϕn−m(t). Applying Lemma 1 for the pair (X,Y ), where
c = (n−m)/m by the continuity of |ϕ(t)|2 at t = 0, we get that

ρ(X,X + Y ) �
√
mn−1.(16)

Combining this lower bound with the upper bound of inequality (19) of [4], we get the
following corollary.

Corollary 1. Equality (6) holds for any nondegenerate, independent identically dis-
tributed X1, . . . , Xn.
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2. Proofs.
Proof of Theorem 1. Note that if ψn → ψ in L2 and ϕn → ϕ in L2, with both ϕ and ψ

nonzero (in L2), then corr(ϕn, ψn) → corr(ϕ,ψ). Consequently, in definition (1) it suffices to
consider ϕ and ψ in the dense subsets BL of L2(ξ) and L2(η), consisting of bounded Lipschitz
functions, using the notation ‖ψ‖BL = ‖ψ‖∞ + ‖ψ‖Lip. Fix ϕ,ψ bounded and Lipschitz
having positive variances at X and Y + tZ, respectively. Define ∆(r) = min(1, |r|‖Z‖), so∣∣ψ(Y + tZ) − ψ(Y + sZ)

∣∣ � 2‖ψ‖BL∆(t− s),

implying that∣∣∣cov(ϕ,ψ(Y + tZ)
)
− cov

(
ϕ,ψ(Y + sZ)

)∣∣∣ � 4‖ϕ‖∞‖ψ‖BLE
(
∆(t− s)

)
,

∣∣D(
ψ(Y + tZ)

)
− D

(
ψ(Y + sZ)

)∣∣ � 8‖ψ‖2
BLE

(
∆(t− s)

)
.

By the bounded convergence E(∆(t − s)) → 0 as s → t, implying that D{ψ(Y + sZ)} is
bounded away from 0 in a neighborhood of t, so also

corr
{
ϕ,ψ(Y + sZ)

}
→ corr

{
ϕ,ψ(Y + tZ)

}
as s → t.

Thus

λ �−→ sup
{

corr
(
ϕ,ψ(Y + λZ)

)
: D

(
ϕ(X)

)
, D

(
ψ(Y + λZ)

)
are finite

}
is lower semicontinuous. This ends the proof of the first part of the theorem.

Combining the first part of the theorem and inequality (7) for λZ, we have

ρ(X,Y ) � lim inf
λ→0

ρ(X,Y + λZ) � ρ(X,Y ),

proving the continuity of ρ(X,Y + λZ) at λ = 0 and completing the proof of Theorem 1.
Proof of Theorem 2. Let λ2 > λ1 > 0; write λ1 = cλ2, where 0 < c < 1. Let Uc be a

random variable independent of X,Y, Z such that Z ∼= cZ + Uc. From (7),

ρ(X,Y + λ1Z) = ρ(X,Y + λ2cZ) � ρ(X,Y + λ2cZ + λ2Uc)

= ρ
(
X,Y + λ2(cZ + Uc)

)
= ρ(X,Y + λ2Z).

If λ2 < λ1 < 0, then setting λ′
2 = −λ2, λ′

1 = −λ1 one has

ρ(X,Y + λ1Z) = ρ(−X,−Y − λ1Z) = ρ(−X,−Y + λ′
1Z)

� ρ(−X,−Y + λ′
2Z) = ρ(X,Y − λ′

2Z) = ρ(X,Y + λ2Z).

Inequality (7), applied for λZ, extends the above monotonicity properties of λ �→ ρ(X,Y +
λZ) to [0,∞) and (−∞, 0], respectively. By Theorem 1 this function is lower semicontinuous
in λ; hence it is right continuous wherever nonincreasing, and left continuous wherever
nondecreasing.

Proof of Theorem 3. We assume without loss of generality that EX = EZ = 0, EX2 =
EZ2 = 1. Using (12) with λ = 1/s > 0 we get ρ(X,Z + sX) = corr(X,Z + sX), and hence

E(X | Z + sX) =
s

1 + s2
(Z + sX)(17)

(see [4, p. 344]). Replacing Z by −Z in (12), it is easy to see that (17) holds also for s � 0.
This implies

E
[
X exp

{
it(Z + sX)

}]
=

s

1 + s2
E
[
(Z + sX) exp

{
it(Z + sX)

}]
.

Differentiating this relation with respect to s at s = 0 we get

itE
{
X2 exp(itZ)

}
= E

{
Z exp(itZ)

}
.
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Since X, Z are independent and EX2 = 1, this shows that the characteristic function
ϕ(t) = E exp(itZ) satisfies the differential equation ϕ′(t) = −tϕ(t), and hence Z is Gaussian.
With u = 1/s, it follows from (17) that

E(Z | X + uZ) = E(Z | Z + sX) = (Z + sX) − sE(X | Z + sX) =
u

1 + u2
(X + uZ).

Reversing the roles of X and Z, by the same argument as before X is also Gaussian.
Proof of Lemma 1. Recall that for characteristic function the |ϕ(t)|2 � 1 holds. So,

fixing t ∈ R such that |ϕX(t)| �= 1, and considering separately the real and imaginary parts
of f(x) = eitx, it is easy to check that (4) implies

ρ2(X,X + Y ) � E|E(f(X + Y ) | X)|2 − |Ef(X + Y )|2
E|f(X + Y )|2 − |Ef(X + Y )|2 .

We have |Ef(X + Y )|2 = |ϕX(t)ϕY (t)|2,
∣∣E(f(X + Y ) | X

)∣∣2 =
∣∣ϕY (t)

∣∣2, ∣∣f(X + Y )
∣∣2 = 1.

Thus, if in addition |ϕY (t)| �= 0,

ρ2(X,X + Y ) � |ϕY (t)|2(1 − |ϕX(t)|2)
1 − |ϕX(t)|2|ϕY (t)|2 =

1

1 + (|ϕY (t)|−2 − 1)/(1 − |ϕX(t)|2) .

Taking now the lim sup of the right-hand side as t → 0, we get the conclusion (15) out of
our assumption (14).

Proof of Theorem 4. Applying Lemma 1 to Y = λZ we get that

ρ(X,X + λZ) � 1√
1 + |λ|α

.(18)

If X and Z are symmetric, the pairs (X,X+λZ) and (X,X−λZ) have the same distribution.
Hence, it suffices to prove the converse of (18) for λ > 0. To this end, fix 0 < ε < λ and let
m < n be positive integers such that λ− ε < (n/m− 1)1/α < λ. Then, by Theorem 2 (and
by the invariance of ρ under nondegenerate linear transformations),

ρ(X,X + λZ) � ρ(X,X + (nm−1 − 1)1/αZ)

= ρ
(
m1/αX,m1/αX + (n−m)1/αZ

)
= ρ(Sm, Sn),

where Sn denotes the sum of n independent copies of the α-stable random variable X.
Therefore, inequality (19) in [4] gives

ρ(X,X + λZ) �
√

m

n
� 1√

1 + (λ− ε)α
.

Since ε > 0 is arbitrary, this ends the proof.

3. Some counterintuitive examples. Here some examples are constructed that
demonstrate counterintuitive features of the maximum correlation.

Example 1. Let Z be a nondegenerate random variable independent of (X,Y ). As
|λ| → ∞, one may ask when X and Y + λZ become “asymptotically independent,” i.e.,

lim
|λ|→∞

ρ(X,Y + λZ) = 0.(19)

From [2] it follows that for bounded ϕ,ψ

lim
|λ|→∞

cov
{
ϕ(X), ψ(Y + λZ)

}
= 0
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if Z has a density, and that

lim
|λ|→∞

cov
{
ϕ(X), ψ(Y + λZ)

}
= cov

{
ϕ(X), ψ(Y )

}

if Z is discrete. The latter shows that (19) does not hold in general. Here is a related explicit
example. Let X be an arbitrary (nondegenerate) random variable, let the distribution of Y be
concentrated on [− 1

2
, 1

2
], and let Z be a binary random variable taking values −1 and +1. For

any (known) λ with |λ| > 1, Y can be reconstructed from Y + λZ implying that for |λ| > 1,
ρ(X,Y + λZ) = ρ(X,Y ) and does not go to 0 as |λ| → ∞.

Example 2. These X,Y, Z would give an example of ρ(X,Y + λZ) that does not
decrease monotonically in λ ∈ (0,∞) unless ρ(X,Y + λZ) ≡ ρ(X,Y ).

We shall now show that if X = Y with P{X = − 1
2
} = P{X = 1

2
} = 1

2
and Z is

independent of X with P{Z = −1} = P{Z = 1} = 1
2
, then ρ(X,X + λZ) = 1/

√
2 < 1

for λ = 1
2
.

The random variable X + Z/2 takes values −1, 0,+1 with probabilities 1
4
, 1

2
, 1

4
, respec-

tively. In view of (3), one may always assume

ϕ

(
− 1

2

)
= −1, ϕ

(
1

2

)
= 1.

Then E(ϕ(X)|X + Z/2 = ±1) = ±1 and E(ϕ(X)|X + Z/2 = 0) = 0. Thus ρ2 =
supϕ E{[E(ϕ(X)|X + Z/2)]2} = 1

2
by (4).

Example 3. The random variables X,Z from Example 2 are also an example of
ρ(X,X +λZ) which, as a function of λ, is discontinuous at λ = 1

2
and − 1

2
. Indeed, for any λ

with |λ| �= 1
2
, X can be reconstructed from X + λZ, whence

ρ(X,X + λZ) = 1, |λ| �= 1

2
,

while ρ(X,X ± Z/2) < 1 as shown above.
This construction can easily be generalized to X and Z with finite > 2 number of values

such that the continuity of ρ(X,X + λZ) fails to hold at prescribed λi > 0, i = 1, . . . , k.
Taking X,Z as above and Y concentrated on [− 1

6
, 1

6
], independent of Z, such that

1 > ρ(X,Y ) > 1/
√

2, we now see by Example 1 that for λ = 1
2
,

ρ(X,Y + λZ) = ρ(X,Y ) > ρ(X,X + λZ),

the dependence between X and Y + λZ is stronger than the dependence between X and
X + λZ at λ = 1

2
, whereas the opposite relationship holds at λ = 0.

Example 4. The asymptotic independence (19) may fail even when X = Y and Z are
both in L. Indeed, let X be an α-stable random variable and let Z be a β-stable random
variable independent of X for some 0 < α < β � 2 (β = 2 in the case where Z is normal).
With (X ′, Z′) denoting an independent copy of (X,Z), the distribution of (X +X ′, Z +Z′)
equals up to a nonrandom constant, that of (21/αX, 21/βZ). Hence, by (9),

ρ(X,X + λZ) � ρ
(
X + X ′, X + X ′ + λ(Z + Z′)

)
= ρ(X,X + λ21/β−1/αZ).

Since 21/β−1/α < 1, Theorem 2 provides the reverse inequality, implying that ρ(X,X+λZ) is
constant on (0,∞) and constant on (−∞, 0). By Theorem 1 this function of λ is continuous
at λ = 0; hence ρ(X,X + λZ) = ρ(X,X) = 1. Obviously, (19) fails to hold in this case.

4. Open problems. I. As shown in Theorem 2, Z ∈ L implies monotonicity of ρ(X,Y +
λZ) in λ for any (X,Y ) independent of Z.

It is interesting to investigate whether the condition Z ∈ L is sufficient for continuity
of ρ(X,Y + λZ) at λ �= 0. More generally, what is the class of Z for which monotonicity or
continuity of λ �→ ρ(X,Y + λZ) applies for all (X,Y )?
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II. More generally, one may consider the properties of

ρp,q(ξ, η) = sup

{
cov(U, V )

‖U‖p‖V ‖q
: U ∈ Lp(ξ), V ∈ Lq(η), U, V �= 0

}

for 1/p + 1/q � 1, where ρ = ρ2,2. Of particular interest are ρ∞,∞ corresponding to strong
mixing, and ρ∞,1 and ρ1,∞ corresponding to uniform strong mixing.
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