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Summary. In this paper we consider some properties of rotation - invariant 
distributions on R n, which are determined by a form of conditional moment  
of order e > 0. In particular we prove that the Gaussian distribution is deter- 
mined uniquely by its conditional moments and we investigate the related 
question of finiteness of exponential moments. The case of general ~ > 0  
appears to be more difficult to analyze than the case e = 2, studied previously 
by other authors. 

O. Introduction 

Characterizations of probability distributions by their properties attracted atten- 
tion because of practical importance to recognize a class of distributions before 
any statistical inference is made. A classical result rarely mentioned in this con- 
text is a well-known characterization by P. L6vy of diffusion processes as pro- 
cesses with continuous trajectories satisfying some constraints on the form of 
the first two conditional moments (see Billingsley, (1968) Theorem 19.3). In recent 
years there has been an increasing number of examples of those situations, 
in which knowing the form of some conditional moments provides unexpectedly 
accurate information about  distributions of dependent sequences. This phenome- 
non is peculiar to dependent situations and so far there is no general theory 
of it. Most of the known situations deal with Gaussian processes under various 
assumptions: continuity of trajectories, see Billingsley (1968) Theorem 19.3, 
L2-continuity, see Plucifiska (1983), Wesotowski (1984), L2-differentiability, see 
Bryc, Szabtowski (1984), discrete time, see Bryc, Plucifiska (1985). There is also 
unexpected information about  integrability of random variables hidden in inte- 
grability of some conditional moments, see Bryc (1985). 

Recently it was checked, that the Poisson process is uniquely determined 
by a form of its conditional moments of first two orders, see Bryc (1987). In 
a series of papers, P. Szabtowski (1986a-c, 1987) considered those properties 
of the so-called elliptically contoured distributions, which are determined by 
conditional variances and conditional covariances, see also Cambanis et al. 
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(1981). It appears that in general, finite dimensional distributions of 
Lz-differentiable processes frequently are determined uniquely by their first two 
conditional moments, see Szabtowski (1986 c). 

Most of that research concentrated on the role played by the first two condi- 
tional moments (with some exceptions: Bryc, Szabtowski (1984) considered con- 
ditional expectations of Hermite polynomials, Cambanis et al. (1981) character- 
ized Gaussian distribution by conditional moment  of any integer order). 

The subject of this paper is to consider some properties of elliptically con- 
toured distributions determined by a conditional moment  of arbitrary order 
e > 0 .  This was suggested by Szabtowski (1987) Remark 4, and Cambanis et al. 
(1981) Corollary 8 and their remark thereafter. It appears that the case c~:t:2 
is considerably more difficult and, except of the Gaussian case, more complicated. 

Elliptically contoured distributions are affine transformations of rotation 
invariant distributions. Therefore in statements of results we shall limit our 
attention to rotation-invariant distributions, which we shall call here "spherically 
invariant". Generalization of results to elliptically contoured distribution would 
just complicate notations. 

In Sect. 1 we shall show that among spherically invariant distributions both 
the Gaussian distribution and the uniform distribution on a sphere (the latter 
under an additional restriction on the dimension of variables) are uniquely deter- 
mined by a form of conditional moment  of order e > 0. We shall also provide 
a simple proof  of (or a version of) Szablowski (1986 a) which says that, under 
mild technical assumption, a form of conditional moment  of order c~ = 2 deter- 
mines uniquely any spherically invariant distribution. 

In Sect. 2 we shall study the finiteness of exponential moments. In some 
sense the results generalize part of Szabtowski (1987) Theorem 2 even in the 
case e = 2 ,  and Theorem 2.1 below permits to show E exp (eX~)< co in some 
situations with c~ < 2. However it is more difficult to analyze by our method 
those situations, when the conditional moment  is not bounded; the case e = 2  
is well covered by Szabtowski. 

In this paper we shall use the standard notation F ( x ) :  ~tX-Xe-tdt, 
1 0 

B(x, y)=F(x)F(y)/F(x+y)= S tx-~(1-ty  -l  dt, Rex,  R e y > 0 .  Equalities be- 
0 

tween random variables are always interpreted as equality almost everywhere. 

1. Uniqueness 

Let n > 2 be fixed. Recall, that X = (X~ . . . .  , X,) has a spherically invariant distri- 
bution, if for each el ,  ..., e ,~R  such that ~ e 2 =  1 we have ~e~Xk~--X~ (here 
and below - denotes equality of distributions). 

Let l<m<n be fixed. Denote XI=(X1  . . . . .  X,,), Xz=(X, ,+I  . . . . .  X,), R 
= (~  X~) ~/2= ]]XI[. It is known, that the distribution of X is determined uniquely 
by one of the following: distribution of X~, distribution of HX 2 [I, distribution 
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of R, see Cambanis etal.  (1981). Also it is known, that E(I[XI[[=[X2) 
=E([[X 1 [/" [ [IX/[[) a.e. (whenever defined). 

The following result result generalizes Cambanis et al. (1981) Corollary 8a 
to arbitrary exponents e > 0. 

Theorem 1.1. I f  X has a spherically invariant distribution such that for some 
~ > 0  E[XI[~< oo and E([IX 1 ][~[Xz)=const a.e. then X is a Gaussian vector. 

Remark. Theorem 1.1 was proved by Cambanis et al. (1981) for e = 1, 2 . . . . .  Their 
method does not generalize to noninteger e. A related problem was also consid- 
ered by Richards (1984). 

Our method of proof of Theorem 1.1 will also provide easy access to the 
following version of a theorem due to Szabtowski (1986 a), see also Galambos, 
Kotz (1978), Theorem 2.3.2. 

Theorem 1.2. Suppose X has spherically invariant distribution such that E IX1] z 
< ~ and P(I[X][ = 0 ) = 0 .  Let the function c(r2):=E([[Xl[[2 [ [IX2 [[ =r )  be such that 

f l /c (x)dx< o~ for each a with 0 < a < i n f { x :  c(x)=0}. Then the distribution of 
0 

X is uniquely determined by the function c (r), r >= 0. 

The following lemma reduces proofs of Theorems 1.1, 1.2 to investigation 
of solutions of an integral equation. 

Lemma 1.4. Suppose X has a spherically invariant distribution and P ( X = 0 ) = 0 .  
Then random variable [IX z[I has a density f with respect to Lebesgue measure 
on R. 

Suppose furthermore that for some ~>0,  E [ X 1 ] ~ < ~  and let ca(x), x>O be 
a function such that 

E(NXl ]F~ I X2)= c~(IrX2 II 2). 

Then the function gp(x)= x("+ x-n)/2 f (x 1/2) satisfies the integral equation 

oo 

ca(x) q~(x)= 1/B(e/2, m/2) S (Y-X)  ~/2-1 (o(y)dy, x>O. (1.1) 
o~ 

Proof Let H be a distribution of [[XI[. It is known (see Cambanis et al. (1981) 
formula (8) and the proof of their Corollary 8 a), that [IX 2 ]] has the probability 
density function f which satisfies 

f ( x ) = C x "  ,~-1 ~ r-~,-Z)(rZ_x2),n/z-Z dH(r), x~O (1.2) 
x 

the integral being finite of set o f ' s  of R1-Lebesgue C except a x measure 0; 

is  ormi g constant 1 a,so 

oo 

c=(x2) f ( x ) = C x n - m - 1  S ( r 2 - x Z ) ( m + ~ ) / 2 - 1 r - ( n - 2 ) d H ( r )  , x ~ O .  (1.3) 
x 
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r 

Since (r2 - x2)(m+=)/2-1= 2/B(~/2, m/2) 5 ( tZ-  x2) ~/2 t (r2 - ta)m/2-1t dt, (1.1) fol- 
x 

lows from (1.2) and (1.3) by Fubini theorem and change of variable from x 
to X 1 /2 .  

Proof of Theorem 1.1. First observe, that without losing generality we may 
assume P(X=0)=0 .  Indeed if P (X=0)>0 ,  then P(E(lIXt/l~lX2)=0)>0 and 
since c~(x)=const, therefore c,(x)-=0. This in turn implies E IIXIII~=0. Thus, 
X1 = 0  and X = 0  and if P(X =0)>0 ,  the theorem is proved. 

Assume P(X=0)=0 .  Then by Lemma 1.4 the density f of lIXzj I exists and 
to prove the theorem it suffices to show that the integral Eq. (1.1) has a unique 
solution in the class of all measurable functions q5 such that ~b(x)>0, and 

clo 

x"-'-14)(x2)dx= l. 
0 

Indeed uniqueness of the solution implies that q~(x) and thus the density 
f (x)  of lIX2 IL is as in the Gaussian case. This implies that X is Gaussian (see 
Cambanis et al. (1981) for formulas relating distribution of X to a density func- 
tion of HX2 i[.). 

To prove the theorem it remains therefore to show that the integral equation 

oo 

4)(x) = K  ~ ( y - x )  ~-* 4)(Y) dy (1.4) 
x 

where fl = ~/2, K =(B(fl, m/2)C~)-1, has a unique solution under the constraints 
oo 

(i) q~(x)>0 for each x > 0 ;  (ii) ~ x ~"-")/2-1 (o(x)dx=2. 
0 

Let ~(s)= { x  s-1 (a(x)dx be the Mellin transform of qS. From Theorem 2.2 
0 

below it follows that ~(s) is well defined for each complex s with Re s > (n-m)/2.  
Applying the Mellin transform to both sides of (1.4) and switching the order 
of integrals on the right hand side (which is permitted because the integrands 
are non-negative) we obtain for Re s > (n-- m)/2 

F(fl) F(s) ~)(fl + s). (1.5) 

Thus the Mellin transform ~1 of the function q51(x)= (o([KF(fl)]- 1/~ x) has the 
form 

~p~ (s)= F(s) p(s) (1.6) 

where p(s) is a periodic function with period equal fl, and Re s > (n-m)/2.  More- 
over, since ~l(s) is analytic in the half-plane Re s > ( n - m ) / 2  and F(s)=t=O for 
Re s>0,  therefore p(s) is analytic (i.e., has an analytic extension to C). Also 
p(t)~R for any real t. 

We shall show that p(s)= const. Indeed, since ~b (x)> 0 it can be easily checked 
(either directly, or using the well known relation between Mellin and Fourier 



Distributions Determined by Conditional Moments 55 

transforms, see e.g., Titchmarsh (1937), p. 8), that q~l (51) is a completely monotonic 
function and in particular (see e.g., Akhiezer (1965), p. 210) q51 (t) is logarithmical- 
ly convex for all large enough real t. This implies that for all large enough 
real t 

d 2 d 2 
dt z In p ( t ) + ~  In r(t)__>0. 

Moreover, it is known (see e.g., Magnus, Oberhettinger (1949), p. 3) that 

dt--y In C(t)= - - -  . = o ~  (t+n)2 i - ~  for any N>= 1, t >0 .  

d 2 d 2 
Therefore lim ~ In F ( t )=0  and thus ~ lnp ( t )>0  for all t>0 .  This means 

t --+ O0 

d l n p ( t )  is a continuous, periodic and non-decreasing that function. Hence 

d 
d t  In p(t) = const and since p(t)eR this proves that p(t) = const, i.e., by the unique- 

ness of analytic continuation p(s)= const for all seC. 
Thus, we proved that ~ l (s )=  const F(s) for all se C such that Re s> (n-m)~2 

and inverting the Mellin transform ~b(x)=const e x p ( - x C ) .  (Note that const 
is a norming constant determined uniquelly and C = F(m/2 + fl)/(F(m/2) Ca). Since 
the same reasoning applies to any spherically symmetric Gaussian vector, this 
proves that the distribution of IlX2lr is the same as in the Gaussian case and 
thus X has a Gaussian distribution. The proof of Theorem 1.1 is completed. 

Note. Probabilistic solutions of Eq. (1.4) and more general integral equations 
were analyzed by J. Deny, see e.g., Ramachandran et al. (1984). 

Proof of Theorem 1.2. By Lemma 1.4 it suffices to show that the Eq. (1.1) has 
unique probabilistic solution. Let A < oo be smallest number a such that c (a) = 0. 
Since qS(y)>0, it follows from (1.1) that q~(x)=0 for almost all x > A .  Therefore 
it is enough to show that (I.1) determines uniquely ~b(x) for x < A .  Repeating 

Szabtowski's argument we differentiate (1.1) obtaining 2 d dx [c (x) (o (x)] = - m q~ (x) 

< x < A or 2 ~ -  = - m ~, (x)/c (x), where 0 (x) = c (x) q~ (x). for 0 Thus 
a x  

for each 0 < x < A and 

~ , ( x ) = C e x p - S  m dt 
0 2c(t) 

0 (x) = C/c(x) exp - ~ m o 2 ~ d t "  

A 
The constant C is determined uniquely by S xn- " -  1 (~ (X2) dx = 1 and thus the 

o 
theorem is proved. 
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In the case, when c~=2r is an even integer, the reasoning used in the proof  
of Theorem 1.2 leads to differential equation 

dx r O(x)=(-  1)~(r - 1)! B r, c(x) t~(x). (1.7) 

This equation can be solved effectively for some values of r and some functions 
e(x), but it seems to be hard to deal with it in full generality. 

Note  however that in the special case n=2 ,  m = l  and ~ = 2 r > 2  being an 
even integer, one has the following integral equation for r (x) 

c(x) r (x) 
r -  1 [ r  1\ x 

= 1/B(r, m/2) Z [ -k } ( -  1)kxkmr-k-1-- 1/B(r, m/2) I (Y -x ) r - l c~(y)dy ,  (1.8) 
k = O \  / 0 

where mk= S xk 4) (X) dx is absolute moment  of order 2 k + 1 of X2, 0 _  k_< r -  1. 
0 

Thus under appropriate restrictions on the function c(x) one can infer that 
c (x) together with all moments of orders 2 k + 1, 0 <_ k_< r -  1 determine the distri- 
bution of (X 1, X2) uniquely (see Pogorzelski (1966) Chap. 1, p. 13 for situations 
in which the Eq. (1.8) has a unique solution). 

Fortunately at least in the particular case of uniform distribution on the 
sphere, it is possible to have uniqueness based on just a single moment.  

Theorem 1.3. I f  X has spherically invariant distribution such that for some real 
~ > 0  EIXII~< 0% and for some A > 0  

E ( l l X t l ? l X 2 ) =  IIX2112) ~/2 /f /IX2[l<A, 
Y jJx~jJ > A .  

and moreover m/2-n/4(~N and 

E II X l I I ~ = A s r (n/2) F ((m + e)/2)/(F ((n + c0/2 ) F (m/2)), 

then X has uniform distribution on the sphere of radius A. 

We don't  know, whether the condition m/2-n/4  r N can be omitted in gener- 
al, but one can show that it is irrelevant at least if ~/2 is an odd integer. 

Proof of Theorem 1.3. First observe that as in the proof of Theorem 1.1. 
P ( X = 0 ) = 0 .  Indeed, if P ( X = 0 ) # 0 ,  then P(E(IIXxII~IX2)=0)>0 and since 
E(IIX 1 lie ]X2~---O)=~=O, this is not possible. 

Therefore by Lemma 1.4 it is enough to show that the integral Eq. (1.1) 
determines uniquely the distribution of X. First, observe that as in the proof 
of Theorem 1.2 q5 (x)= 0 for almost all x > A. Taking this into account and substi- 
tuting 0 (x)= r (A (1 -x ) ) ,  where 0 < x < 1 we can rewrite (1.1) in the form 

x 

x~O(x)=K ~(x--y)B-lO(y)dy, 0 < x < l  (1.9) 
0 
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where fl = c~/2, K = 1/B(m/2, fl). 
Convoluting both sides of Eq. (1.9) with the function g ( x ) = x  r, 

evaluating at the point x = 1 we obtain 
x > 0  and 

1 

J (1 - x)" x~ ~ (x) ,ix 
0 

I 

= F (m/2 + fl) F (r + 1) (F (m/2) F(fl + r + I)) -1 ~ ( 1 -- x) r + ~ 0 (x) d x.  
0 

(1.1o) 

1 

Note that S (1 --X) (n-m)/2- 1(1 --x)ax fl O(X) dx =2E(IIX2112%4 - I IX2 [12)~). There- 
0 

fore (1.10) applied to r =  k + ( n - m ) / 2 - 1  gives 

E (LI X2 II 2 k ( A  2 _ [I X2 II 2)~) 

= F (m/2 + fl) F (r + 1) (F (m/2) F (fl + r + 1))-1 E (A2 _ [1 X2 II 2)k + ~. (1.11) 

Using the binomial formula the left hand side of (1.11) can be written in the 
form 

j~=o (jk.) A2k- 2J(-1)J E ( A 2 -  llX2ll2) j+p 

giving the following expression for the numbers mj=E(A2--[IX2IL2) j+a, 
j : O ,  1,. " 

It(m~2 + ~) r ( r  + 1) (r(m/2) r ( p  + r + 1))- 1 _ _  ( _ _  1)j]  m k  

=k~l~k.)AZk-2i(--1)Jmj, k = 1 , 2  . . . . .  
j = 0  

(1.12) 

It remains to note that from (1.12) we can determine ink, k >  1 uniquelly, since 
the coefficient F(m/2 + fl) F(r + 1) (r(m/2) r ( ~  + r + 1))- i _ ( _  1)k is clearly non- 
zero if k is an odd integer and it is also non-zero for even k because we have 
assumed that m / 2 -  n/4q~ N. 

The recurrence relation obtained determines uniquely all the moments 
E(A 2 -  IIX2 II 2)k+~ for k = 1, 2 . . . .  provided that E(A 2 -  IIX2 II) ~ 
= E(g([lXl I? I X2))= E [IX1 l] = i s  given. 

Hence, see Shohat, Tamarkin (1943), p. 109, the distribution of A 2 -  I[X2 II 2 
and the distribution of X, is determined uniquely. The proof is completed. 

The next result can be viewed as a characterization of the normal distribution 
among spherically invariant distributions by a kind of "linearity of regression" 
assumption expressed by (1.13) below. 

Theorem 1.5. Suppose that X is spherically invariant random vector with n>_ 3 
and let ml, m2>l  be such that m l + m 2 < n .  Define X I = ( X  1 . . . . .  Xml), X2 
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=(X,, ,+ 1 . . . .  , X,.1+,,2), Xa=(X,,l+m2+1 . . . .  , X,),  and suppose that for some real 
> 0 we have E IX1 ]~ < co and for some 0 < fl < 1 

E(ltX~l[~lX2, X a ) =  flE(llXx [l~ I X2)-4-(1-- fl)E(IIX~[I~ I X3) .  (1.13) 

If o'(X2)(~ o(X3) is trivial, then X is the Gaussian vector. 

Proof. By Theorem 1.1 it suffices to show that E I I(X1 II ~ I x2) = E II X 1 II ~ a.e. Denote 
E r ( ' ) = E ( ' I Y ) .  An "Alterniende Verfahren", see Rota  (1962), says that 
(E x2 EX3) k IlXl II ~--' E(flXx rl~l ~r(X3) ~ ~(X2)) almost everywhere as k ~ oe (and 
hence in L1, too). Since o-(X3)~ a(X2) consists of sets of measure 0 or 1 only, 
the theorem will be proved by passing to the limit as k--* 0% once we show 
the following lemma. 

Lemma 1.6. I f  X1, X2, X 3 are random vectors such that for some O<fl< 1 (1.13) 
holds, then for each integer k >= 0 

EX=(llX, 119 = (E x= EX3) k E x= II x, II ~. (1.14) 

Proof We shall proceed by induction with respect to k. There is nothing to 
prove for k = 0 and assume that (1.14) holds for some k > 0. Then 

g x2 IlXl I[~ = EX= E x='x~ [IX1 [l~ = fiE x2 IlXlll~ + (1--]~) E x 2  E x 3  I[X, II ~. 

Since 1 - fl ~ 0 this implies 

E x~ IIX~ [I ~ = E x= E x~ IIX~ II ~. (1.15) 

Repeating the same reasoning with the use of (1.13) and the fact, that f l # 0  
we obtain 

EX~ EX~ I[Xl 1[ ~ = EX~ EX~ EX~ II Xx II ~. (1.16) 

Substituting (1.16) and (1.15) into (1.14) proves that (1.14) holds for k +  1 and 
the lemma is proved by induction. 

Remark. The case of an infinite sequence X = (Xk)~N such, that for each n the 
distribution of (X 1, ..., X,) is spherically invariant, deserves separate mention 
because proofs can be then simplified. In that case it is known, that X = R G ,  
where G=(Gk) is a sequence of i.i.d. Gaussian random variables and R > 0  is 
a random variable independent of G and ~r(X,, X ,+I  .... ) measurable for each 
n__> 1, see e.g., Cambanis et al. (1981). Therefore if we split X into (X1, X/) with 
X I = ( X I , . . . , X n )  , X2=(Xn+l ,  Xn+ 2 . . . .  ), we can easily see, that E(llXall~lX2) 
=E(W'E(IIGII[~[ G2, R) lX2)=const  R% In particular this proves immediately 
Theorem 1.1, since the conditional moment  is non-random iff R = const is non- 
random. Also Eq. (1.13) is satisfied in this conditionally Gaussian situation. 
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2. Exponential Moments 

It was shown in Bryc (1985) that if random variables Xo, X 1 are c~-integrable 
for some c~>0 and such that for some 0 <  Ipl < 1 

E([X i -pX~ l~ lX j )<C a.e. i+ j  i,j=O, 1 (2.1) 

then Xo, X 1 have finite moments of all orders. In general the finiteness of expo- 
nential moments doesn't follow from (2.1), see example 2.3 below. However, 
one can strengthen condition (2.1) enough to prove finiteness of exponential 
moments. The statement of the condition might look a little artificial but it 
applies nicely to some situations including spherically invariant vectors. 

Theorem 2.1. Let C, ~, ~ >=0, K be f ixed positive constants, ~ <c~ and assume 
X i is an e-integrabIe random variable, such that for each value of Ipl < 1 there 
is an c~-integrable random variable X o satisfying the conditions 

(a) E(IX~--IPlXpTIXp)<=C(1--1ply a.e. 
(b) E(IXp-lPlX~l~lXO<C(1-1Pl) ~ a.e. 
(c) IX_ol+lXpi>2ip l lX~[  
(d) P(IX,  I>t)<=KP(IX~I>t) foreach t > l .  

Then for some 2 > 0 E {exp (2 ]Xi I ~/~'-~))} < oe. 

The proof  of the theorem is based on the following lemma. 

Lemma 2.2. Under the assumption of Theorem 2.1 the function N ( t)= P (IX I[ > t) 
satisfies for each a > 0 and t > a the inequality 

a ~ N(t)  < 2 K a N ( t - -  a) + 2 a(K + 1) N(t),  (2.2) 

where a = C(a/t)t 

Proof. Fix 0 < a < t and let p = 1 - a/t. Clearly 

N(t) <= P(IX11 > t, IX o I > t) + e ( l x  11 > t, IX _p ] > t) 

+ e ( I X l l > t ,  IXol<t,  IX-p l< t ) .  (2.3) 

We shall consider each term separately starting from the last one. 

P(IX~l > t, [Xp I<=t, IX-pl  <=t)<=P(lX~ - p X p [  >(1 - p )  t, 

I X l - p X - p l > ( 1 - p ) t ,  [Xol<=t, IX_pl<=t, I x o l + l x - p ] >  2pt)  

< = P ( I X l - p X o l > ( 1 - p )  t, p t  <lXol<__t) 

+ P ( I X l - p X _ p l  > ( l - p )  t, p t < {X_p[-< t). 

Thus by a conditional version of Cebygev inequality and (a), (b) 

P(IXll>t, IXpl<t, IX_pl<=t)<=2Ka(1--p)-~t-~n(pt). (2.4) 
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The first two right h a n d  side te rms  in (2.3) can be bounded  as follows, see 
Bryc (1985) 

P(lX~[>t, I X p l > t ) ~ P ( l X l - p X p l > ( 1 - p ) t ,  I X o l > t )  

+ P ( I X p - p X 1  l> t, IXll > t )<a(K + 1)[( t  - p )  t]-~N(t) 

and similarly 

(2.5') 

P ( I X t  I > t, IX_ol > t)__<a(K+ 1) [-(1 - p )  t]-~N(t). (2.5") 

Inequal i ty  (2.2) follows now f rom (2.3), (2.4), (2.5) by our  choice of  p. 

Proof of Theorem 2.1. Suppose  first tha t  e = 0 ,  i.e. we have  o-= C in (2.2). Let  
a be such tha t  a~>  2 o-(K + 1). Then  (2.2) implies 

N (t + a) < q N (t) (2.6) 

2KC 
where q = . By a choice of  a large enough  we can also ensure 

a ' - -2C(K+ 1) 
q = e -0  for some 0 > 0. Then  (2.6) implies N (n a)< e -~  (0), which in turn  implies 

N(t)__<const e -~  for all t > 0  and  thus E exp 21Xll < oo for some 2 > 0 .  
In  the case when  e 4= 0, put  r = cr Then  (2.2) implies tha t  for some cons tan t  

A 
N(t)<=At ~a~-~N(t--a), t>a.  

Choos ing  a = (A + 1) 1/("~- 1)) t -  1/(r - 1)) for large enough  t we ob ta in  

N(t) < A - - ~  N ( t - ( A  + 1) 1/(~('- 1)) t -  1/(,- 1)) 

which can be rewri t ten in the fo rm 

N(t)<=qN(t--Bt -t/(r-1)) fora l l  t> T (2.7) 

r 
where 0 < q < 1 and  T, B > 0 are constants .  Let  K = B. T h e n  for  any  integer  

r - 1  
n > l ,  

r - 1  r - 1  
(Kn) T < [K(n + 1)] T -  B [K(n + i)3 - ' / ' .  (2.8) 

Indeed  (2.8) is equivalent  to 

(Kn) 1 - 1/~ (Kn + K) 1/~ < Kn + K - B 

and the last inequality is a consequence of elementary xl/r yl-1/r < l  x + ( 1 - 1 )  y 

valid for any  posi t ive x, y and  any  exponen t  0_< 1 <  1. Since N(t) is a decreasing 
r 

function, it follows f rom (2.7) and  (2.8) tha t  N([K(n + 1)] (r- 1)/r)__< qN((Kn)(r-1)/~) 
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r - 1  
for all n large enough. Therefore N((Kn)~-)<const  q" and hence 
E(exp 2 [X~ [r/(r- 1)) < co for some 2 > 0. 

The following result follows immediately from Theorem 2.1. 

Theorem 2.2. Let (X1, . . . ,  X,) be a spherically symmetric e-integrable sequence, 
n>2 ,  ct>0, and for some 1 <m<n denote X t =(X1, ..., X,,), X2 =(Xm+l,  ..., X,). 
I f  E([IXll[" [ X2)<const  a.e. then for some 2 > 0  E exp 21X1 [2< oo. 

Remark. Theorem 2.2 can be atso obtained directly from Lemma 1.4. This 
approach requires estimating F(ncO, n>l ,  which is well known in the case of 
integer c~ or, as was pointed out by J. Chen, using "integral inequalities" and 
Theorem 1.1. However the proof via Theorem 2.1 has a nice interpretation that 
for finiteness of exponential moments only values p ~ 1 are essential. This seems 
to indicate an interesting difference from what was observed in Bryc, Szabtowski 
(1984) Theorem 2.1, where p ~ 0 was used to determine the Gaussian distribution 
uniquely. 

Proof We shall reduce the problem to a pair of spherically symmetric variables. 
Indeed E(IX~I~IXn)<E(IIX~II~IX.)--E(E([IX~[I=IX2)IX.)<=const. Since a pair 
(Xt, X,) has spherically symmetric distribution, too, see Cambanis et al. (1981), 
without losing generality we may consider a pair of random variables only. 
Let 0 be such that ]p] =cos  0 and define for all - 1 < p <  1 

X o = X ~ cos 0 + X,  sin 0, where sign 0 = sign p. 

Then the assumptions (c) and (d) of Theorem 2.1 are clearly satisfied. Also the 
assumptions (a) and (b) are satisfied with s = e/2. Indeed 

e ( [x  o -[p[ Nil= [ X l ) =  [sin O?E(IXI?IX,)~ 2~/2 (i - [p ] )  =/2 const 

thus (b) is satisfied. 
Since (X1, Xp)~-(Xp, XO in distribution, also (a) is satisfied and by Theo- 

rem 2.1 E exp (2 L X 11 s) < co for some 2 > 0. The proof  is completed. 

Remark. In the case c~= 2 more detailed result was proved in the preliminary 
version of Szabtowski (1986 a), see also Szabtowski (1987) Theorem 2. 

We conclude with example, which shows that in the statement Theorem 2.1 
one cannot limit the attention to a single value of p only and thus Bryc (1985) 
Theorem A cannot be improved to cover exponential moments. 

Example 2.3. Consider random variables (X~, X2)~-(X2, X~) with distribution 
concentrated on lines y=�88 and y=4x,  such that for x=> 1 the projection of 
the line y = �88 x onto the x-axis has as probability density function p(x) = Cx-l~ x, 
x > 1, C being normalization constant. Then for X2 > 1 

E (I X1 -- 1/4X21 [ X2 = x) = (15/4) 2 x 2 p(4x)/(p(x) + p (4 x)) 

_< 16(x 2 + l/x2) - 1 ~ 16, X>= 1. 
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Since for values of X2< 1 we have obviously E([X1-1/4X2llX2:x)~ 16, too, 
and by symmetry E ( I X  2 -  1/4XIIX1)< 16 a.e., this shows that the assumptions 
of Bryc (1985) Theorem A are satisfied. However, E(exp(2]Xll)=oo for any 
choice of 2 > 0. 
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