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On the Conditional Expectation
with Respect to a Sequence of Independent o-fields

W. Bryc and S. Kwapien

ul. Pereca 13/19 m 1412, P-00-849 Warsaw, Poland

Summary. In the paper we characterize those sequences of random variables
which are conditional expectations of a p-integrable random variable with
respect to a given sequence of independent o-fields.

Let (Q,91, P) be a probability space, and (9%,) a sequence of independent o-
subfields of 9 (e.g. for each sequence of 4;eN; i=1,...,n there holds

P (ié Ai) = Ul P(A)).

If M<IR and 1=<p=oco we shall denote by L () (resp. L, if =) the
Banach space of all random variables X which are 9t-measurable and such that
1X],=(EIX|P)""? <o if p< oo, and

[ X, =supess|X(w)] <oo if p=oco.
wef2

The closed linear subspace of L () of those X such that EX =0 will be
denoted by (%) (resp. L, if T="M).

Theorem 1. a) If X is a random variable such that EX =0 and E|X|In"|X|< o0

oK
then the series Y E(X|9) is convergent in L, and almost surely.
i=1

b) If XeLOp, and 1 <p< o0 then the series Z E(X|9%,) is convergent in L,
=1
Moreover there exists a constant C, depending only on p such that

el

> E(X|9,)

i=1

=C1X1,.

p
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Proof. Let S be a linear operator defined by S(X)= Y E(X|9,). Since (N,),.y are
i=1
independent o-fields S is an orthogonal projection in I, and

IS5 = Z IEXI)I3=X]; for XeLi.

i=

[sa]

By Kolmogorov theorem the series Z E(X|9,) is convergent almost surely.

Let us define Banach spaces I° ln LO exp as follow: I°In (resp. I° exp) consists
of all random variables such that EX=0 and E|X|ln*|X|<oo (resp.
Eexp A|X|<oo for some A>0). The norms are defined as usually in Orlicz
spaces. The bilinear form (X, Y>=EXY establishes an isomorphism between
L exp and the dual space of I°In (cf. [5]). The following Lemma and the closed
graph theorem imply that S is a continuous linear operator from I into I°exp.

Lemma 1. If (X,),.y is a sequence of independent, uniformly bounded random

o0

variables and the series Z X, is convergent almost surely then Eexpl| Y. X,

i=1 i=1

<0

for each A.

The proof of Lemma follows from Hoffmann-Jergensen's inequalities (cf. [2])
and was explicity given by Krakowiak, [4].
Since S is a selfadjoint operator S is a continuous linear operator from I°In

into I!. This proves that the series Z E(X|%,) is convergent in L, and hence

i=1
almost surely. To prove the second part of Theorem1 let us consider an

operator H defined by
H(X)=sup |E(X|%)|.

H is a subadditive and positively homogeneous operator. Moreover

THX) | = 1X 1
and
[H(X)|, S [[HX —EX)||, +E(X) = IS(X —EX)|,+ 1 X[, =211 X],.

Therefore by Marcinkiewicz interpolation theorem, [6], for 2<p=< oo there
exists a constant C, depending only on p such that

IHX)|,=C,IX|, for XeL,.

Lemma 2. If (X)),_y is a sequence of independent random variables and p < co then

1)

where K, is a constant depending only on p.

o0

2 X

i=1

ng@supmnﬁ
14 i i=1
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The proof of Lemma?2 follows directly from Theorem3.1 of Hoffmann-
Jorgensen [2].
Now Lemma 2 and the preceding inequality give

EXI0)| <
i=1 P

1=

K, (IHXI, + 18X ) =K (CL I X, + [ X )=

K (C,+ DX, if 2sp<co, and XeL(L. Therefore S is a continuous operator
from L, into I, for 2=p<co. Since S is a selfadjoint operator by duality
arguments S is continuous also for 1<p =2. This completes the proof.

Remark 1. Theorem 1 generalizes Basterfield’s, [1], result who proved that if
XeLin then E(X|9t) is convergent almost surely to EX.

Corollary 1. Ler 1 <p< o0, and let (X,),_y be a sequence of random variables such
that X;e LS(N) i=1,2,.... Then there exists XeL) such that X;=E(X|%,)

oo}

=1,2,... zf and only if the series Y X, is convergent in L, or equivalently
0 i=1
Z ) < oo,

Proof. By Theorem | the condition is necessary. On the other hand side if the

/\

series » X, is convergent in L, then putting X to be equal to the sum of the
i=1
series we obtain that X has the desired property. To end the proof let us observe

o]

that by Marcinkiewicz theorem [6] the series ) X, is convergent in L,
o0 p/2 =
1<p<ooif and onlyE(z Xf) < o0.
i=1
Theorem 2. Let (X,),.y be a sequence of random variables such thar X,eI%(3,) i
=1,2,.... Then ]im 1X:1,=0 is a necessary and sufficient condition for the
existence of X in I° such that X,=E(X|R,) i=1.2,....
Proof. Let (T));.y be a sequence of operators in I, defined by T,(X)=E(X|N,) i
=1,2,.... Then ||T;=1 and for each Xel’(c(N,u---UN,)) T,X=0 for i>n.

Since Ul L (a (Ul ‘ﬁl)) is a dense subset in I (a (Ul ‘ﬁl)) we obtain that

lim T,X =0 for each Xel’ (G(U 9?,)) If XelI’, then T,X=T,Y where Y
i— o0 i=1
=E(XIG(U *J?l)> and thus lim 7;X =0. This proves the necessity of the con-
=1 i— o

dition.

Let us denote by ¢o(I%(9,);.5) the Banach space of all sequences (X)), y of
random variables such that X;e’,(9) i=1,2,... and such that lim | X ||, =0.
The norm in the space is defined by e

(X ienll 1,00 = SUP X1,
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The dual of this space is isomorphic with the space [, (I’ (R,),_y) —the space
of all sequences (X,),.y of random variables such that [(X), x|, ,

=3 |IX;l,<oo and such that X,eI’ (M) i=1,2,.... The isomorphism is

i=1

established by the bilinear form {(X,);.y, (Vx> = Z EX.Y,

=1
By the first part of this proof the operator T deflned by T(X)=(E(X|N));y 1s
a continuous linear operator from I into ¢q(L;(N,);cn)-
To end the proof we have to show that the operator T is “onto”. By Banach
theorem T is “onto” if the adjoint operator T* is an isomorphic embedding, e.g.
there exists a constant C such that

CITHX ieml oo Z 1X D el o, 1

But T* is given by T*(X,),.y)= Z X, and the existence of C(C=1) follows
from the Lemma i=1

Lemma 3. If (X);.y is a sequence of independent random variables with EX,=0 i
=1,... then

S X
i1

The proof is simple and is omitted.

=Y I1Xill,
i=1

Remark. 2. Theorem 2 shows that Theorem 1 may not be extended on the case p
=1. It proves even that there exists X e[’; such that the sequence (E(X|N,),.y is
not convergent almost surely. It was observed in [1].

Theorem 3. Let (X,),.y be a sequence of random variables such that X,e L? (R) i
=1,2,.... A necessary and sufficient condition for the existence of XeL® such
that X, =E(X|N) i=1,2,... is that

sup | X o <00 and Y ||IX;}<o0.
i . i=1

Proof. Let us consider the Banach space W of all sequences (X)), of random
variables such that X,eI? (®%,)i=1,2,..., and such that

o 12
H(Xi)ieNHWzmaX{SL_lp Xl (21 HXJ\%) }<OO'

The bilinear form {(X,);cn,(Y)ien> = Z EX.,Y, establishes an isomorphism be-

tween W and the dual space of V— the space of all sequences (X});.y of random
variables which can be written as (X,),.y=(Y;+Z),.y where YeI’(N),
Z.el%h(M)i=1,2,... and

© © 1/2
v+ (3 1Z3) <
i=1 i=1
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the norm [|(X)),.xly is the infimum of the sum over all such representation of
(Xi)ieN'

Now Theorem 3 may be reformulated in a way that the operator T (defined
in the proof of Theorem 2) is a continuous linear operator from LOOO onto W. Let

T’ be an operator defined by T'((X,);.x)= Y. X;. Then the adjoint operator of T"
i=1

is the operator 7T, and therefore by Banach theorem to end the proof it is enough

to show that 7" is an isomorphic embedding of V into I7, that is there exists a

constant C such that
CHX Dienly SNTUX Dienll s £ CHX Dienlly-

If (X,);cn=(Y;+Z)),.n. Is a representation as before then

on

Y, (%+Z)

i=1

0

>z,

i=1

IT*X)l, = +

Thus
ITUX el 1 = (X Dienlly-
The other side of the inequality is obtained from the

Lemma 4. There exists a constant C such that for each sequence (X,),.x of
independent random variables with EX,=0 there holds

o)

2 X

i=1

e

> X

i=1

1

| x| = ¥ ixi,+ 22 (X Ix-Exy,
1 2 i=1

i=1

0 1/2
+ IXP=EX[I3) ) where Xi=XiIig. o,
i=1

Xz/'l:XiI,Xi‘SI i:1,2,....

The proof of this Lemma is contained implicitly in the proof of Theorem 3.6
of Jain, Marcus [3].
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