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Summary .  In the paper  we characterize those sequences of  r a n d o m  variables 
which are condi t ional  expectat ions of  a p- integrable r a n d o m  variable with 
respect  to a given sequence of independent  a-fields. 

Let  (O, ~JJ-l, P) be a probabi l i ty  space, and (91i) a sequence of independent  ~- 
subfields of  gJ~ (e.g. for each sequence of A~s91 i i =  1 . . . .  , n there holds 

n 

If  91m~J~ and l__<p__<oo we shall denote  by Lp(91) (resp. Lp if 91--9211) the 
Banach  space of all r a n d o m  variables X which are 91-measurable and such that  
[[Xll p = (EIXIP) lip < oo if p < 0% and 

rlxl[p=supessrX(co)l < c o  if p = o o .  
COff~ 

The closed linear subspace of Lp(9I) of those X such that  EX = 0 will be 
denoted  by LOP(91) (resp. L~ if 9l = 9J~). 

Theorem 1. a) I f  X is a random variable such that EX=O and EIXJ ln+lXI < oo 

then the series ~ E(Xlglz) is convergent in LI and almost surely. 
i=1 

b) I f  X ~ L  ~ and 1 < p <  oo then the series ~, E(XI91i) is convergent in Lp. 
i=1 

Moreover there exists a constant Cp depending only on p such that 

i~1E(x[91i) p< cp[IxIIp. 
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Proof. Let S be a linear operator defined by S(X)= ~ E(XI91i). Since (9li)i~ N are 
i = 1  

independent o--fields S is an orthogonal projection in L ~ and 

IIS(X)ll~= ~ I IEKXl~31[~  blX[12 ~ 
i = l  

for XEL~ . 

By Kolmogorov theorem the series ~ E(X[9ll) is convergent almost surely. 
i = l  

Let us define Banach spaces L ~ ln, L ~ exp as follow: L ~ In (resp. L ~ exp) consists 
of all random variables such that EX=O and EIXIln+lXl<oo (resp. 
E exp2IXl<oo for some 2>0). The norms are defined as usually in Orlicz 
spaces. The bilinear form (X,  Y ) = E X Y  establishes an isomorphism between 
L~ and the dual space of L~ (cf. [5]). The following Lemma and the closed 
graph theorem imply that S is a continuous linear operator from L ~ into L~ 

Lemma 1. I f  (Xi)i~ N is a sequence of independent, uniformly bounded random 

EexP2i~= Xi <~ variables and the series X i is convergent almost surely then 
i = l  

for each 2. 

The proof of Lemma follows from Hoffmann-Jorgensen's inequalities (cf. [2]) 
and was explicity given by Krakowiak, [4]. 

Since S is a selfadjoint operator S is a continuous linear operator from L~ 

into L 1. This proves that the series ~ E(XI~) is convergent in L1 and hence 
i = 1  

almost surely. To prove the second part of Theorem 1 let us consider an 
operator H defined by 

n(X) = sup IE(X[9li)l. 
i 

H is a subadditive and positively homogeneous operator. Moreover 

HH(X)It ~ < IlStl 

and 

IIH(X)IL2 < HHfX-EX)tlN+IE(X)I < IlS(X-g(x)llz+ [IXll2 <2  IIX[12. 

Therefore by Marcinkiewicz interpolation theorem, [6], for 2 < p < o o  there 
exists a constant C~ depending only on p such that 

I[H(X)llpNCp]IXI[ p for X~L, .  

Lemma 2. I f  (Xi)i~ N is a sequence of independent random variables and p < oo then 

i~= a Xi p<=KP( ]supIXi' "P+ i~=1 Xi 2) 

where Kp is a constant depending only on p. 
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The proof of Lemma2 follows directly from Theorem3.1 of Hoffmann- 
Jorgensen [2]. 

Now Lemma 2 and the preceding inequality give 

i=~ E(XI~J~i) p <=Kp(NH(X)I[p+ IIS(X)ll2)<=Kp(Cpi]XIIP+ IIXIIP) = 

Kp(@+l)flXllp if 2 < p < o o ,  and X ~ L  ~ Therefore S is a continuous operator 
from L~ into L~ for 2 < p < o o .  Since S is a selfadjoint operator by duality 
arguments S is continuous also for 1 < p < 2 .  This completes the proof. 

Remark 1. Theorem 1 generalizes Basterfield's, El], result who proved that if 
X ~ L l n  then E(xIgl~) is convergent almost surely to EX. 

Corollary 1. Let 1 < p <  0% and let (Xi)i~ N be a sequence of random variables such 
that XiEL~ i = l , 2 , . . . .  Then there exists X ~ L  ~ such that Xi=E(Xrgl i )  

~o 

i= 1, 2, ... if and only if the series ~ X i is convergent in Lp or equivalently 

E X <oo. 
i _  

Proof By Theorem 1 the condition is necessary. On the other hand side if the 

series ~ X~ is convergent in Lp then putting X to be equal to the sum of the 
i = 1  

series we obtain that X has the desired property. To end the proof let us observe 

that by Marcinkiewicz theorem [6] the series ~ X~ is convergent in Lp, 
i - - 1  

[ co \ p / 2  

l < p < c o i f a n d o n l y E { ~ ,  X~) <oo. 
\ i =  i / 

Theorem 2. Let ( X i ) i e  N be a sequence of random variables such rhat XieL~ i 
=1,2 , . . . .  Then lim llXil]l=0 is a necessary and sufficient condition ,for the 

i ~  oo 

existence of X in L ~ such that Xi=E(XIgti)  i= i, 2, .... 

Proof Let (T/)i~ N be a sequence of operators in L ~ defined by Ti(X)=E(XIg~i) i 
=1,2  . . . . .  Then ]IT/II<I and for each XeL~ T/X=0 for i>n. 

o ((__ol)) Since L ~ a 9~i is a dense subset in L ~ ~r 9/i we obtain that 
i = 1  i i 

l i m T / X = 0  for each X e L ~  If X c L  ~ then TiX= T~ Y where Y 
i ~  ao i \ \ = 1 ] !  

=E Xta ~ and thus lim T/X=0. This proves the necessity of the con- 
i - -  i ~ o o  

dition. 
Let us denote by co(L~ the Banach space of all sequences (Xi)i~ u of 

random variables such that XieL~ i=1 ,2  ... .  and such that lira IIX~lll=0. 
The norm in the space is defined by i~oo 

II (Xi)i~s I],, :o = sup ]IX 111. 
i 
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The dual of this space is isomorphic with the space l l (L~ space 
of all sequences (Xi)i~ N of random variables such that II(X~),~NII~,I 

O3 

= ~ IIXill~<oe and such that XiEL~ i=1 ,2 , . . . .  The isomorphism is 
/=1  

established by the bilinear form ((X~)i~N, (Yi),~N) = EX, Y~. 
i ~ l  

By the first part  of this proof  the operator T defined by T(X)=(E(XI9li)),~ N is 
a continuous linear operator from L~ into co(L~ 

To end the proof we have to show that the operator T is "onto".  By Banach 
theorem T is "on to"  if the adjoint operator T* is an isomorphic embedding, e.g. 
there exists a constant C such that 

C I1T*((X~),~N)II ~ _-> II(X~)~NI[ ~. 1. 

But T* is given by T*((X~)~N)= ~ X~ and the existence of C(C=I)  follows 
from the Lemma i~ 1 

Lemma 3. I f  (Xi)i~ N is a sequence of independent random variables with E X  i = 0 i 
= 1 ... .  then 

The proof is simple and is omitted. 

Remark. 2. Theorem 2 shows that Theorem 1 may not be extended on the case p 
= 1. It proves even that there exists X ~ L  ~ such that the sequence (E(X[9I~))i~ N is 
not convergent almost surely. It was observed in [1]. 

Theorem 3. Let (Xi)i~ N be a sequence of random variables such that X i e E ~  (9li) i 
= 1 , 2  . . . . .  A necessary and sufficient condition for the existence of X E L  ~ such 
that X~=E(XIgl~) i= 1,2 . . . .  is that 

supl lXi l l~<oc and ~ IIXilh2<oe. 
i i=1  

Proof. Let us consider the Banach space W of all sequences (Xg)i~ N of random 
variables such that X~eL~ i = 1, 2, . . . ,  and such that 

( oo \ 1 / 2 ]  

hl(xi)i~xHw=max sup llXilh~, i~=l llxi][2 ) ~<oe.  

The bilinear form ((Xi)ieN,(Yi)iEN> = L EXiY~ establishes an isomorphism be- 
i=1  

tween W and the dual space of V - t h e  space of all sequences (X~)i~ N of random 
variables which can be written as (Xi)i~lv=(Yi+Zi)i~N where Yi~L~ 
ZieL~ i = 1, 2 . . . .  and 

i=I i= 
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the norm Ij(Xi)i~Nl[V is the infimum of the sum over all such representation of 
(XOi~'. 

Now Theorem 3 may be reformulated in a way that the operator T (defined 
in the proof of Theorem 2) is a continuous linear operator from L ~ onto W. Let 

T' be an operator defined by T'((Xf)i~N)= ~ X~. Then the adjoint operator of T' 
i=1 

is the operator T, and therefore by Banach theorem to end the proof it is enough 
to show that T' is an isomorphic embedding of V into L ~ that is there exists a 
constant C such that 

C-  1 I[ (Xi)i~N [1 v <= [I r'((Xi)i~N ill < C [[(Xi)i~N II v. 

If (xi)i~ N = (Yi + ZOi~N, is a representation as before then 

[]T*(Xi)][l= i~=l (gi-]-zi) 1~ i=1 ~ !~// lnt-i~=l zi 2 

2F -< ~ I[~111+ 11z,/12 �9 
i=1 i 

Thus 

II T'((Xi)ieN)l[1 ~ I[(Xi)ieNI]V . 

The other side of the inequality is obtained from the 

Lemma 4. There exists a constant C such that for each sequence (XO~s of 
independent random variables with EX~ = 0 there holds 

i N i l  ~ Af_ i~=l X ~ , ] 1 2 ~  (=~ 1 c > rlX'~lPx IIX;-EX'~I[~ 
1 i=1 i-- 

(~1  \1/2\ ,, 2 ' I -~ HXtit-EXill2) ), where X I = X  i Ix,l>1, 
i =  

XI' =Xillxd<_ i i :  1, 2, .... 
The proof of this Lemma is contained implicitly in the proof of Theorem 3.6 

of Jain, Marcus I-3]. 
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