On the Conditional Expectation with Respect to a Sequence of Independent $\boldsymbol{\sigma}$-fields

W. Bryc and S. Kwapień
ul. Pereca 13/19 m 1412, P-00-849 Warsaw, Poland

Summary. In the paper we characterize those sequences of random variables which are conditional expectations of a p-integrable random variable with respect to a given sequence of independent σ-fields.

Let $(\Omega, \mathfrak{M}, P)$ be a probability space, and $\left(\mathfrak{N}_{i}\right)$ a sequence of independent σ subfields of \mathfrak{M} (e.g. for each sequence of $A_{i} \in \mathfrak{M}_{i} i=1, \ldots, n$ there holds

$$
\left.P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)\right)
$$

If $\mathfrak{M} \subset \mathfrak{M}$ and $1 \leqq p \leqq \infty$ we shall denote by $L_{p}(\mathfrak{N})$ (resp. L_{p} if $\mathfrak{N}=\mathfrak{M}$) the Banach space of all random variables X which are \mathfrak{N}-measurable and such that $\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p}<\infty$ if $p<\infty$, and

$$
\|X\|_{p}=\underset{\omega \in \Omega}{\operatorname{supess}}|X(\omega)| \quad<\infty \quad \text { if } p=\infty
$$

The closed linear subspace of $L_{p}(\mathfrak{N})$ of those X such that $E X=0$ will be denoted by $L_{p}^{0}(\mathfrak{P})$ (resp. L_{p}^{0} if $\mathfrak{N}=\mathfrak{M}$).
Theorem 1. a) If X is a random variable such that $E X=0$ and $E|X| \ln ^{+}|X|<\infty$ then the series $\sum_{i=1}^{\infty} E\left(X \mid \mathfrak{N}_{i}\right)$ is convergent in L_{1} and almost surely.
b) If $X \in L_{p}^{0}$, and $1<p<\infty$ then the series $\sum_{i=1}^{\infty} E\left(X \mid \bigcap_{i}\right)$ is convergent in L_{p}.

Moreover there exists a constant C_{p} depending only on p such that

$$
\left\|\sum_{i=1}^{\infty} E\left(X \mid \mathfrak{M}_{i}\right)\right\|_{p} \leqq C_{p}\|X\|_{p}
$$

Proof. Let S be a linear operator defined by $S(X)=\sum_{i=1}^{\infty} E\left(X \mid \mathfrak{M}_{i}\right)$. Since $\left(\mathfrak{N}_{i}\right)_{i \in N}$ are independent σ-fields S is an orthogonal projection in L_{2}^{0} and

$$
\|S(X)\|_{2}^{2}=\sum_{i=1}^{\infty}\left\|E\left(X \mid \Re_{i}\right)\right\|_{2}^{2} \leqq\|X\|_{2}^{2} \quad \text { for } X \in L_{2}^{0}
$$

By Kolmogorov theorem the series $\sum_{i=1}^{\infty} E\left(X \mid \mathfrak{M}_{i}\right)$ is convergent almost surely.
Let us define Banach spaces $L^{0} \ln , L^{0} \exp$ as follow: $L^{0} \ln \left(\right.$ resp. $\left.L^{0} \exp \right)$ consists of all random variables such that $E X=0$ and $E|X| \ln ^{+}|X|<\infty$ (resp. $E \exp \lambda|X|<\infty$ for some $\lambda>0$). The norms are defined as usually in Orlicz spaces. The bilinear form $\langle X, Y\rangle=E X Y$ establishes an isomorphism between $L^{0} \exp$ and the dual space of $L^{0} \ln$ (cf. [5]). The following Lemma and the closed graph theorem imply that S is a continuous linear operator from L_{∞}^{0} into $L^{0} \exp$.
Lemma 1. If $\left(X_{i}\right)_{i \in N}$ is a sequence of independent, uniformly bounded random variables and the series $\sum_{i=1}^{\infty} X_{i}$ is convergent almost surely then $E \exp \lambda\left|\sum_{i=1}^{\infty} X_{i}\right|<\infty$ for each λ.

The proof of Lemma follows from Hoffmann-Jørgensen’s inequalities (cf. [2]) and was explicity given by Krakowiak, [4].

Since S is a selfadjoint operator S is a continuous linear operator from $L^{0} \ln$ into L^{1}. This proves that the series $\sum_{i=1}^{\infty} E\left(X \mid \mathscr{R}_{i}\right)$ is convergent in L_{1} and hence almost surely. To prove the second part of Theorem 1 let us consider an operator H defined by

$$
H(X)=\sup _{i}\left|E\left(X \mid \mathfrak{P}_{i}\right)\right|
$$

H is a subadditive and positively homogeneous operator. Moreover

$$
\|H(X)\|_{\infty} \leqq\|X\|_{\infty}
$$

and

$$
\|H(X)\|_{2} \leqq\|H(X-E X)\|_{2}+|E(X)| \leqq \| S\left(X-E(X)\left\|_{2}+\right\| X\left\|_{2} \leqq 2\right\| X \|_{2} .\right.
$$

Therefore by Marcinkiewicz interpolation theorem, [6], for $2 \leqq p \leqq \infty$ there exists a constant C_{p} depending only on p such that

$$
\|H(X)\|_{p} \leqq C_{p}\|X\|_{p} \quad \text { for } \quad X \in L_{p}
$$

Lemma 2. If $\left(X_{i}\right)_{i \in N}$ is a sequence of independent random variables and $p<\infty$ then

$$
\left\|\sum_{i=1}^{\infty} X_{i}\right\|_{p} \leqq K_{p}\left(\left\|\sup _{i}\left|X_{i}\right|\right\|_{p}+\left\|\sum_{i=1}^{\infty} X_{i}\right\|_{2}\right)
$$

where K_{p} is a constant depending only on p.

The proof of Lemma 2 follows directly from Theorem 3.1 of HoffmannJørgensen [2].

Now Lemma 2 and the preceding inequality give

$$
\left\|\sum_{i=1}^{\infty} E\left(X \mid \mathfrak{N}_{i}\right)\right\|_{p} \leqq K_{p}\left(\|H(X)\|_{p}+\|S(X)\|_{2}\right) \leqq K_{p}\left(C_{p}\|X\|_{p}+\|X\|_{p}\right)=
$$

$K_{p}\left(C_{p}+1\right)\|X\|_{p}$ if $2 \leqq p<\infty$, and $X \in L_{p}^{0}$. Therefore S is a continuous operator from L_{p}^{0} into L_{p}^{0} for $2 \leqq p<\infty$. Since S is a selfadjoint operator by duality arguments S is continuous also for $1<p \leqq 2$. This completes the proof.
Remark 1. Theorem 1 generalizes Basterfield's, [1], result who proved that if $X \in L \ln$ then $E\left(X \mid M_{i}\right)$ is convergent almost surely to $E X$.
Corollary 1. Let $1<p<\infty$, and let $\left(X_{i}\right)_{i \in N}$ be a sequence of random variables such that $X_{i} \in L_{p}^{0}\left(\mathfrak{M}_{i}\right) \quad i=1,2, \ldots$. Then there exists $X \in L_{p}^{0}$ such that $X_{i}=E\left(X \mid \mathfrak{M}_{i}\right)$ $i=1,2, \ldots$ if and only if the series $\sum_{i=1}^{\infty} X_{i}$ is convergent in L_{p} or equivalently $E\left(\sum_{i=1}^{\infty} X_{i}^{2}\right)^{p / 2}<\infty$.
Proof. By Theorem 1 the condition is necessary. On the other hand side if the series $\sum_{i=1}^{\infty} X_{i}$ is convergent in L_{p} then putting X to be equal to the sum of the series we obtain that X has the desired property. To end the proof let us observe that by Marcinkiewicz theorem [6] the series $\sum_{i=1}^{\infty} X_{i}$ is convergent in L_{p}, $1 \leqq p<\infty$ if and only $E\left(\sum_{i=1}^{\infty} X_{i}^{2}\right)^{p / 2}<\infty$.
Theorem 2. Let $\left(X_{i}\right)_{i \in N}$ be a sequence of random variables such that $X_{i} \in L_{1}\left(\mathfrak{M}_{i}\right)$ i $=1,2, \ldots$. Then $\lim \left\|X_{i}\right\|_{1}=0$ is a necessary and sufficient condition for the existence of X in $\stackrel{i \rightarrow \infty}{L_{1}^{0}}$ such that $X_{i}=E\left(X \mid \Re_{i}\right) i=1.2, \ldots$.
Proof. Let $\left(T_{i}\right)_{i \in N}$ be a sequence of operators in L_{1}^{0} defined by $T_{i}(X)=E\left(X \mid \Upsilon_{i}\right)$ i $=1,2, \ldots$. Then $\left\|T_{i}\right\| \leqq 1$ and for each $X \in L_{1}^{0}\left(\sigma\left(\mathfrak{N}_{1} \cup \cdots \cup \mathfrak{N}_{n}\right)\right) T_{i} X=0$ for $i>n$. Since $\bigcup_{i=1}^{\infty} L_{1}^{0}\left(\sigma\left(\bigcup_{i=1}^{n} \mathfrak{N}_{i}\right)\right)$ is a dense subset in $L_{1}^{0}\left(\sigma\left(\bigcup_{i=1}^{\infty} \mathfrak{N}_{i}\right)\right)$ we obtain that $\lim _{i \rightarrow \infty} T_{i} X=0$ for each $X \in L_{1}^{0}\left(\sigma\left(\bigcup_{i=1}^{\infty} \mathfrak{N}_{i}\right)\right)$. If $X \in L_{1}^{0}$, then $T_{i} X=T_{i} Y$ where Y $=E\left(X \mid \sigma\left(\bigcup_{i=1}^{\infty} \mathfrak{N}_{i}\right)\right)$ and thus $\lim _{i \rightarrow \infty} T_{i} X=0$. This proves the necessity of the condition.

Let us denote by $c_{0}\left(L_{1}^{0}\left(\Re_{i}\right)_{i \in N}\right)$ the Banach space of all sequences $\left(X_{i}\right)_{i \in N}$ of random variables such that $X_{i} \in L_{1}^{0}\left(\Re_{i}\right) i=1,2, \ldots$ and such that $\lim _{i \rightarrow \infty}\left\|X_{i}\right\|_{1}=0$. The norm in the space is defined by

$$
\left\|\left(X_{i}\right)_{i \in N}\right\|_{1, \infty}=\sup _{i}\|X\|_{1}
$$

The dual of this space is isomorphic with the space $l_{1}\left(L_{\infty}^{0}\left(\mathfrak{N}_{i}\right)_{i \in N}\right)$-the space of all sequences $\left(X_{i}\right)_{i \in N}$ of random variables such that $\left\|\left(X_{i}\right)_{i \in N}\right\|_{\infty, 1}$ $=\sum_{i=1}^{\infty}\left\|X_{i}\right\|_{\infty}<\infty$ and such that $X_{i} \in L_{\infty}^{0}\left(\mathfrak{P}_{i}\right) \quad i=\underset{\infty}{1,2, \ldots}$. The isomorphism is

By the first part of this proof the operator T defined by $T(X)=\left(E\left(X \mid \Re_{i}\right)\right)_{i \in N}$ is a continuous linear operator from L_{1}^{0} into $c_{0}\left(L_{1}^{0}\left(\mathfrak{R}_{i}\right)_{i \in N}\right)$.

To end the proof we have to show that the operator T is "onto". By Banach theorem T is "onto" if the adjoint operator T^{*} is an isomorphic embedding, e.g. there exists a constant C such that

$$
C\left\|T^{*}\left(\left(X_{i}\right)_{i \in N}\right)\right\|_{\infty} \geqq\left\|\left(X_{i}\right)_{i \in N}\right\|_{\infty, 1}
$$

But T^{*} is given by $T^{*}\left(\left(X_{i}\right)_{i \in N}\right)=\sum_{i=1}^{\infty} X_{i}$ and the existence of $C(C=1)$ follows
from the Lemma
Lemma 3. If $\left(X_{i}\right)_{i \in N}$ is a sequence of independent random variables with $E X_{i}=0 i$ $=1, \ldots$ then

$$
\left\|\sum_{i=1}^{\infty} X_{i}\right\|_{\infty}=\sum_{i=1}^{\infty}\left\|X_{i}\right\|_{\infty} .
$$

The proof is simple and is omitted.
Remark. 2. Theorem 2 shows that Theorem 1 may not be extended on the case p $=1$. It proves even that there exists $X \in L_{1}^{0}$ such that the sequence $\left(E\left(X \mid \Re_{i}\right)\right)_{i \in N}$ is not convergent almost surely. It was observed in [1].

Theorem 3. Let $\left(X_{i}\right)_{i \in N}$ be a sequence of random variables such that $X_{i} \in L_{\infty}^{0}\left(\Re_{i}\right)$ i $=1,2, \ldots$ A necessary and sufficient condition for the existence of $X \in L_{\infty}^{0}$ such that $X_{i}=E\left(X \mid \Im_{i}\right) i=1,2, \ldots$ is that

$$
\sup _{i}\left\|X_{i}\right\|_{\infty}<\infty \quad \text { and } \sum_{i=1}^{\infty}\left\|X_{i}\right\|_{2}^{2}<\infty
$$

Proof. Let us consider the Banach space W of all sequences $\left(X_{i}\right)_{i \in N}$ of random variables such that $X_{i} \in L_{\infty}^{0}\left(\Re_{i}\right) i=1,2, \ldots$, and such that

$$
\left\|\left(X_{i}\right)_{i \in N}\right\|_{W}=\max \left\{\sup _{i}\left\|X_{i}\right\|_{\infty},\left(\sum_{i=1}^{\infty}\left\|X_{i}\right\|_{2}^{2}\right)^{1 / 2}\right\}<\infty
$$

The bilinear form $\left\langle\left(X_{i}\right)_{i \in N},\left(Y_{i}\right)_{i \in N}\right\rangle=\sum_{i=1}^{\infty} E X_{i} Y_{i}$ establishes an isomorphism between W and the dual space of V - the space of all sequences $\left(X_{i}\right)_{i \in N}$ of random variables which can be written as $\left(X_{i}\right)_{i \in N}=\left(Y_{i}+Z_{i}\right)_{i \in N}$ where $Y_{i} \in L_{1}^{0}\left(\mathfrak{P}_{i}\right)$, $Z_{i} \in L_{2}^{0}\left(\mathfrak{R}_{i}\right) i=1,2, \ldots$ and

$$
\sum_{i=1}^{\infty}\|Y\|_{1}+\left(\sum_{i=1}^{\infty}\left\|Z_{i}\right\|_{2}^{2}\right)^{1 / 2}<\infty
$$

the norm $\left\|\left(X_{i}\right)_{i \in N}\right\|_{V}$ is the infimum of the sum over all such representation of $\left(X_{i}\right)_{i \in N}$.

Now Theorem 3 may be reformulated in a way that the operator T (defined in the proof of Theorem 2) is a continuous linear operator from L_{∞}^{0} onto W. Let T^{\prime} be an operator defined by $T^{\prime}\left(\left(X_{i}\right)_{i \in N}\right)=\sum_{i=1}^{\infty} X_{i}$. Then the adjoint operator of T^{\prime} is the operator T, and therefore by Banach theorem to end the proof it is enough to show that T^{\prime} is an isomorphic embedding of V into L_{1}^{0}, that is there exists a constant C such that

$$
C^{-1}\left\|\left(X_{i}\right)_{i \in N}\right\|_{V} \leqq \| T^{\prime}\left(\left(X_{i}\right)_{i \in N}\left\|_{1} \leqq C\right\|\left(X_{i}\right)_{i \in N} \|_{V}\right.
$$

If $\left(X_{i}\right)_{i \in N}=\left(Y_{i}+Z_{i}\right)_{i \in N}$, is a representation as before then

$$
\begin{aligned}
\left\|T^{*}\left(X_{i}\right)\right\|_{1} & =\left\|\sum_{i=1}^{\infty}\left(Y_{i}+Z_{i}\right)\right\|_{1} \leqq\left\|\sum_{i=1}^{\infty} Y_{i}\right\|_{1}+\left\|\sum_{i=1}^{\infty} Z_{i}\right\|_{2} \\
& \leqq \sum_{i=1}\left\|Y_{i}\right\|_{1}+\left(\sum_{i=1}^{\infty}\left\|Z_{i}\right\|_{2}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Thus

$$
\left\|T^{\prime}\left(\left(X_{i}\right)_{i \in N}\right)\right\|_{1} \leqq\left\|\left(X_{i}\right)_{i_{i \in N}}\right\|_{V}
$$

The other side of the inequality is obtained from the
Lemma 4. There exists a constant C such that for each sequence $\left(X_{i}\right)_{i \in N}$ of independent random variables with $E X_{i}=0$ there holds

$$
\begin{aligned}
C\left\|\sum_{i=1}^{\infty} X_{i}\right\|_{1} \geqq & \sum_{i=1}^{\infty}\left\|X_{i}^{\prime}\right\|_{1}+\left\|\sum_{i=1}^{\infty} X_{i}^{\prime \prime}\right\|_{2} \geqq \frac{1}{2}\left(\sum_{i=1}^{\infty}\left\|X_{i}^{\prime}-E X_{i}^{\prime}\right\|_{1}\right. \\
& \left.+\left(\sum_{i=1}^{\infty}\left\|X_{i}^{\prime \prime}-E X_{i}^{\prime \prime}\right\|_{2}^{2}\right)^{1 / 2}\right), \quad \text { where } X_{i}^{\prime}=X_{i} I_{\left|X_{i}\right|>1}, \\
X_{i}^{\prime \prime}= & X_{i} I_{\left|X_{i}\right| \leq 1} \quad i=1,2, \ldots
\end{aligned}
$$

The proof of this Lemma is contained implicitly in the proof of Theorem 3.6 of Jain, Marcus [3].

References

1. Basterfield, J.: Independent Conditional Expectations and $L \log L$. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21, 233-240 (1972)
2. Hoffmann-Jørgensen, J.: Sums of independent Banach space valued random variables. Studia Math. 52, 159-186 (1974)
3. Jain, N.C., Marcus, M.B.: Integrability of infinite sums of independent vector-valued random variables. Trans. Amer. Math. Soc., 212, 1-36 (1975)
4. Krakowiak, W.: Comparison theorems for and exponential moments. (preprint) [to appear]
5. Krasnosielski, M., Ruticki, B.: Convex functions and Orlicz spaces. Groningen: Noordhoff 1961
6. Marcinkiewicz, J., Zygmund. A.: Quelques théorèmes sur les fonctions independantes. Studia Math. 7, 104-120 (1938)
7. Marcinkiewicz, J.: Sur l'interpolation d'operations. C.R. 208, 1272-1273 (1939)
