
Circuits, Algorithms, and Error Correction

in Quantum Computing

Introduction to Quantum Computing (U. Cincinnati)

Contents

0 Qubit quantum mechanics 2
0.1 Basic computations in quantum mechanics 2
0.2 Single qubit gates and Pauli matrices . 9
0.3 Tensor products . 12
0.4 Entanglement . 15

I Quantum Circuits 17

1 Simple circuits 17
1.1 The no-cloning theorem, controlled-NOT and related gates 17
1.2 Quantum teleportation and encryption . 21

2 Some basic quantum algorithms 30
2.1 Function gates . 31
2.2 Deutsch-Jozsa algorithm . 33
2.3 Grover’s algorithm . 36

II Cryptosystems and Shor’s Algorithm 44

3 Factorization, public key cryptosystems, and the order function 44
3.1 Factorization . 45
3.2 RSA cryptosystem . 46
3.3 The order function and factorization . 47
3.4 Appendix: Modular arithmetic . 49

4 Quantum Fourier transform 55

5 Shor’s quantum algorithm for the order function 60
5.1 Shor’s algorithm . 60
5.2 Example: quantum computation of ord(10, 21). 62
5.3 Appendix: Rational approximant algorithms 66
5.4 Appendix: The behavior of Shor’s algorithm 68

III Noise and Error Correction 71

6 The need for quantum error correction 71

7 Models of noise 73
7.1 Classical noise . 74
7.2 Density matrices . 75
7.3 Quantum operations . 82

8 Error correction for noisy channels 89
8.1 Classical majority voting code . 89
8.2 Shor’s code . 91
8.3 Generalizations . 101
8.4 The toric code . 103

9 Fault-tolerant quantum computation 103

IV Topological Quantum Computation 105

Much of these notes vaguely follow the treatment and notation of M. Nielsen and I.
Chuang, Quantum Computation and Quantum Information (Cambridge, 2000), which will
be referred to as [NC] when specific page references are needed. Part I covers the basics of
quantum gates, circuits, and algorithms, and is loosely based on notes of Marc Cahay and
Paul Esposito; it covers topics in chapters 2, 4, 5, and 6 of [NC]. Part II covers the Shor
quantum factorization algorithm, and is adapted from notes written by George Purdy; it
covers topics in chapter 5 and appendices 4 and 5 of [NC]. Part III covers error correction
strategies for dealing with noise in quantum computation, and is adapted from notes written
by Philip Argyres; it covers topics in chapters 8 and 10 of [NC]. Part IV is a brief gloss
on topological quantum computation, and is loosely drawn from various reviews, notably J.
Preskill’s Lecture Notes in Quantum Computation.1

1J. Preskill, Chapter 9: Toplogical Quantum Computation, http://www.theory.caltech.edu/

∼preskill/ph219/topological.pdf.

1

0 Qubit quantum mechanics

We review here the basic rules of quantum mechanics as applied to a finite collection of
qubits. We emphasize a tensor product formalism that simplifies many of the things we
will do from now on in the course. It will be used extensively in the analysis of quantum
algorithms later on and is an indispensable tool for the analysis of systems of many qubits.

0.1 Basic computations in quantum mechanics

The language of quantum mechanics is complex linear algebra. So in this subsection I quickly
and compactly review the essential rules of complex linear algebra and state the rules of
quantum mechanics in this language. This consists of three parts: Hilbert spaces (com-
plex vector spaces with an inner product), linear operators (in particular hermitian, uni-
tary, and projection operators and their spectral representations), and the physical rules of
quantum mechanics. All the bold faced words and phrases in this subsection are concepts
which are essential to any discussion of quantum mechanics, and should be mastered. A
short (8-page) article designed specifically to introduce these essentials to computer scien-
tists which you might find helpful is “From Cbits to Qbits: Teaching computer scientists
quantum mechanics,” by N. David Mermin, Am. J. Phys. 71 (2003) 23-30.

To start, I assume that you are familiar with the basic algorithms of matrix algebra. These
are, for square matrices, computing determinants, matrix inverses, eigenvalues, and eigenvec-
tors; and for column vectors the Gram-Schmidt orthogonalization procedure for producing
an orthogonal set of vectors with the same span as any given set of linearly independent
vectors. For 3× 3 and larger matrices or 3-component or larger vectors these algorithms are
usually best done with the help of a computer algebra system (e.g., Mathematica), but in
the 2× 2 case you should be able to rapidly carry out these calculations by hand.

Hilbert space review

Recall that an N -dimensional Hilbert space, HN , is the complex vector space CN with an
inner product. We denote vectors in a Hilbert space by kets, |ψ〉, and their hermitian
conjugates by bras, (|χ〉)† = 〈χ|, where hermitian conjugation acts by complex conjugation
of scalars,

(α|ψ〉+ β|χ〉)† = α∗〈ψ|+ β∗〈χ|. (1)

Here α and β denote arbitrary complex numbers, α, β ∈ C. We denote the inner product by
the bracket 〈χ|ψ〉. Recall that the bracket is a complex number, 〈χ|ψ〉 ∈ C, and satisfies

〈χ|ψ〉 = 〈ψ|χ〉∗, conjugation symmetry,

〈ψ|
(
α|φ〉+ β|ξ〉

)
= α〈ψ|φ〉+ β〈ψ|ξ〉, α, β ∈ C, linearity in the ket, (2)

〈ψ|ψ〉 > 0, ∀ |ψ〉 6= 0, positive-definiteness.

The norm of a vector is ||ψ|| :=
√
〈ψ|ψ〉. The inner product is the complex analog of the

dot product of real vectors.

2

A qubit is a vector in a 2-dimensional Hilbert space, H2, of norm 1, i.e., |ψ〉 ∈ C2 and
〈ψ|ψ〉 = 1. Vectors of norm 1 are called normalized, and normalized vectors are also called
states.

We choose an orthonormal basis |0〉 and |1〉 of H2, which means that 〈0|0〉 = 〈1|1〉 = 1
and 〈0|1〉 = 0. Writing the basis as |a〉, a = 0, 1, this orthonormality can be written more
compactly as

〈a|b〉 = δab, (3)

where δab is the Kronecker delta symbol: δab = 1 if a = b and is zero otherwise. That
{|a〉, a = 1, 2} is a basis of H2 means any vector in H2 can be written uniquely as a linear
combination,

|ψ〉 = ψ0|0〉+ ψ1|1〉 =
∑

a∈{0,1}

ψa|a〉, (4)

for some complex numbers ψ0, ψ1. Then

〈ψ|ψ〉 =
(∑

a

ψ∗a〈a|
)(∑

b

ψb|b〉
)

=
∑
ab

ψ∗aψb〈a|b〉 =
∑
ab

ψ∗aψbδab =
∑
a

ψ∗aψa =
∑
a

|ψa|2.

(5)

Thus |ψ〉 is a qubit if it has unit norm, ie,

|ψ0|2 + |ψ1|2 = 1. (6)

The ψa are the components of the state |ψ〉 in the {|0〉, |1〉} basis, and are given by

〈a|ψ〉 = 〈a|
(∑

b

ψb|b〉
)

=
∑
b

ψb〈a|b〉 =
∑
b

ψbδab = ψa. (7)

We also say that ψa is the amplitude for the qubit |ψ〉 to be in state |a〉.
The fact that {|0〉, |1〉} is an orthonormal basis can be encoded in the completeness

relation

1 =
∑

a∈{0,1}

|a〉〈a| = |0〉〈0|+ |1〉〈1|, (8)

where the “1” on the left stands for the identity operator: |ψ〉 = 1|ψ〉. Indeed, using the
completeness relation, this becomes

|ψ〉 = |0〉〈0|ψ〉+ |1〉〈1|ψ〉 = ψ0|0〉+ ψ1|1〉. (9)

There are infinitely many other orthonormal sets of basis vectors in H2 and some will be
useful shortly.

Exercise 0.1 Show that

|0′〉 = α|0〉+ β|1〉
|1′〉 = β∗|0〉 − α∗|1〉 (10)

is an orthonormal basis of H2 for any complex numbers α, β, such that |α|2 + |β|2 = 1.

3

The “original” orthonormal basis, {|0〉, |1〉}, will be referred to as the computational basis
from now on.

Orthonormal bases, components, and completeness relations all apply in a similar fashion
to general N -dimensional Hilbert spaces, HN , not just the 2-dimensional space H2 of qubits.

Linear operator review

We now want to learn how to go from one orthonormal basis to another. We will discuss
this in the context of qubits, but, again, the discussion generalizes immediately to arbitrary
Hilbert spaces. Suppose that we have two sets2 of orthonormal basis vectors, {|0〉, |1〉} and
{|0′〉, |1′〉}. We write them as |a〉, and |a′〉, a ∈ {0, 1}. We are looking for a linear operator,
A : H2 → H2, that maps one basis to the other

A|a〉 = |a′〉, a ∈ {0, 1}. (11)

Recall that a linear operator (also called a linear transformation) maps vectors to vectors,
A : |ψ〉 7→ |ψ′〉 = A|ψ〉, in a linear way, A(α|ψ〉 + β|χ〉) = αA|ψ〉 + βA|χ〉. By linearity,
if we know the action of an operator on a basis, as in (11), then we know it on all states:
A|ψ〉 = A(ψ0|0〉+ ψ1|1〉) = ψ0A|0〉+ ψ1A|1〉 = ψ0|0′〉+ ψ1|1′〉 := |ψ′〉.

We call the set of complex numbers Aab := 〈a|A|b〉 the matrix elements of A. We can
see why by noting that if on an arbitrary state A|ψ〉 = |χ〉, then in components

χa := 〈a|χ〉 = 〈a|A|ψ〉 = 〈a|A
(∑

b

|b〉〈b|
)
|ψ〉 =

∑
b

〈a|A|b〉〈b|ψ〉 =
∑
b

Aabψb, (12)

where we have used the definition (7) and the completeness relation (7). Let us now collect
the 4 complex numbers Aab as the 2× 2 complex matrix

A =

(
A00 A01

A10 A11

)
(13)

and the pairs of complex numbers ψa and χa as the column vectors

ψ =

(
ψ0

ψ1

)
, χ =

(
χ0

χ1

)
. (14)

Then (12) just becomes the matrix equation χ = Aψ. Also, the matrix elements of a
product of operators C = AB are given by Cab = 〈a|C|b〉 = 〈a|AB|b〉 =

∑
c 〈a|A|c〉〈c|B|b〉 =∑

cAacBcb which is simply the matrix expression C = AB. Finally, observe that the matrix
elements of the hermitian conjugate operator are given by

(A†)ab = 〈a|A†|b〉 = 〈b|A|a〉∗ = A∗ba, (15)

which is just A† := (A∗)t, i.e., the complex conjugate transpose matrix. The middle equality
in (15) is actually the definition of what is meant by hermitian conjugation of an operator.
An important consequence is that hermitian conjugation of products reverses order, so

(AB)† = B†A†, (A|ψ〉)† = 〈ψ|A†, (|φ〉〈ψ|)† = |ψ〉〈φ|. (16)

2Here {|0′〉, |1′〉} is an arbitrary orthonormal set, not necessarily the one in the first exercise.

4

These considerations show that kets and operators can be represented by complex column
matrices and complex square matrices, respectively. But it is important to recognize that
this association of vectors and operators to matrices only makes sense relative to a choice of
basis. If one were to choose a different basis, then the matrices would change even though
the vector or operator is unaffected. We have emphasized this distinction by making the
matrix symbols boldface. But we will not do this from now on, and denote operators and
their matrix representations by the same symbols; we thus rely on context to figure out with
respect to which basis the matrix elements are computed.

Return now to the special operator A which transforms the |a〉 orthonormal basis into
the |a′〉 orthonormal basis, (11). From the completeness relation and (11) we have

|b′〉 =
∑

a∈{0,1}

|a〉〈a|b′〉 =
∑
a

|a〉〈a|A|b〉 :=
∑
a

|a〉Aab. (17)

Since {|b′〉, b′ ∈ {0, 1}} is an orthonormal basis, (3) gives

δbc = 〈b′|c′〉 =
(∑

a

〈a|A∗ab
)(∑

d

|d〉Adc
)

=
∑
ad

δadA
∗
abAdc =

∑
a

A∗abAac. (18)

These are the matrix components of the operator equation

AA† = A†A = 1. (19)

Exercise 0.2 Verify this.

An operator or matrix satisfying (19) is called unitary. Note that A unitary implies
A−1 = A†. So we have shown that operators that take one orthonormal basis to another
are unitary. The converse is also true: all unitary operators transform orthonormal bases to
other orthonormal bases. Unitary operators are the complex analogs of rotation operators
in real vector spaces. Just as rotations preserve the dot products of vectors, so unitary
operators preserve the inner products of kets.

Exercise 0.3 Show that unitary transformations preserve the inner product, i.e., if A|ψ〉 =
|ψ′〉 and A|φ〉 = |φ′〉, then 〈ψ′|φ′〉 = 〈ψ|φ〉.

The unitary operators on qubits (or, equivalently, the 2 × 2 unitary matrices) have many
nice properties and useful representations. They are summarized in section 4.2 (pp 174-177)
of [NC], and will be used from time to time in later sections.

Mathematical aside: unitary groups. Consider the set of unitary 2× 2 matrices. We call

this set U(2). It is easy to show that this set is closed under matrix multiplication, that matrix

multiplication is associative, and that the matrix inverse of a unitary matrix is also unitary. We

summarize these properties by saying that U(2) is a group, the unitary group in 2 dimensions.

There is an important relation between hermitian (also known as self-adjoint) opera-
tors and unitary operators. Recall that a hermitian operator is one which satisfies

A† = A. (20)

5

In quantum mechanics, hermitian operators are also called observables. Unlike unitary
operators, hermitian operators do not form a group. But hermitian operators and unitary
operators both satisfy the spectral representation theorem:3

If A is unitary or hermitian, then it has an orthonormal basis of eigenvectors,
A|x〉 = λx|x〉 with 〈x|y〉 = δxy, and

A =
∑
x

λx|x〉〈x|. (21)

The summation is on x ∈ {0, . . . , N−1}, where N is the dimension of the Hilbert
space.

Though the spectrum — the set of eigenvalues {λx, x = 0, . . . , N−1} — is a unique
property of A, the orthonormal basis of eigenvectors is not unique. Nevertheless, the spectral
representation (21) holds for any choice of orthonormal eigenbasis. Note that matrix elements
of A in the orthonormal eigenbasis form a diagonal matrix with the eigenvalues as the
diagonal entries.

Another important property of hermitian and unitary operators (which follows fairly
easily from the spectral representation theorem) states:

Two hermitian or unitary operators A and B commute if and only if they
share an orthonormal basis of eigenvectors.

This is often sloppily summarized as: “commuting operators can be simultaneously diago-
nalized”.

Exercise 0.4 Show that the eigenvalues of hermitian operators are real and those of unitary
operators have norm 1. That is, if A|ψ〉 = λ|ψ〉, then if A is hermitian show that λ = λ∗

and if A is unitary show that λλ∗ = 1.

Unitary and hermitian operators are closely related by exponentiation. In particular, U is
unitary if and only if there is a hermitian matrix, A, such that U = eiA.

Proof: If A = A† then (eiA)† = e−iA
†

= e−iA = (eiA)−1, so U = eiA is unitary. Conversely,

a unitary U has the spectral representation U =
∑
x e

iθx |x〉〈x|, for some real θx, since the

eigenvalues of U have norm 1. Define A =
∑
x θx|x〉〈x|. It is easy to check that A = A† and,

using the orthonormality of the |x〉 that An =
∑
x(θx)n|x〉〈x| for all positive integers n. Then

eiA :=
∑∞
n=0

1
n! (iA)n =

∑
n
in

n!

∑
x(θx)n|x〉〈x| =

∑
x

(∑
n
in

n! (θx)n
)
|x〉〈x| =

∑
x e

iθx |x〉〈x| = U .

An important subset of hermitian operators are the projection operators, or projec-
tors for short. They are operators satisfying

P = P † and PP = P. (22)

Exercise 0.5 Show that the eigenvalues of a projector can only be 0 or 1.

3In fact, this theorem holds for the larger set of normal operators, which are operators A which satisfy
[A,A†] = 0. Clearly hermitian and unitary operators are subsets of the set of normal operators.

6

If follows from the spectral representation theorem that a projector can be written as

P =
∑
x∈E1

|x〉〈x|, (23)

where {|x〉, x = 0, . . . , N−1} is an orthonormal eigenbasis of P and E1 ⊂ {0, . . . , N−1}
is the subset for which |x〉 are eigenvectors with eigenvalue 1. The set {|x〉, x ∈ E1} is
an orthonormal basis for a subspace of HN , called the eigenspace of eigenvalue 1, and
denoted V1 ⊂ HN . Denote by E0 the complement of E1, i.e., E0 := {x |x /∈ E1}. Then
{|x〉, x ∈ E0} is an orthonormal basis for another subspace V0 ⊂ HN which is the eigenspace
of P of eigenvalue 0.

Exercise 0.6 By the definition of the subspace V1, a general vector |ψ〉 ∈ V1 can be written
as |ψ〉 =

∑
x∈E1

ψx|x〉 for some complex numbers ψx. Show that |ψ〉 is an eigenvector of P
with eigenvalue 1.

Exercise 0.7 Show that for any ket |ψ〉 ∈ HN , then P |ψ〉 ∈ V1, and if |ψ〉 ∈ V1, then
P |ψ〉 = |ψ〉. Thus P “projects” vectors onto the subspace V1.

Exercise 0.8 If P is a projector, show that Q := 1−P is also a projector, that QP = PQ =
0, and that Q projects vectors onto the subspace V0.

Exercise 0.9 Show that V0 and V1 are orthogonal subspaces, i.e., if |ψ〉 ∈ V0 and |φ〉 ∈ V1,
then 〈ψ|φ〉 = 0.

In general, for any diagonalizable operator A (e.g., any hermitian or unitary operator),
with distinct eigenvalues {λq} and orthonormal eigenbasis {|x〉, x = 0, . . . , N−1}, we define
the sets Eλq ⊂ {0, . . . , N−1} as the subset for which |x〉 with x ∈ Eλq are eigenvectors
with eigenvalue λq. We call dλq := |Eλq | (i.e., the number of elements in the set Eλq) the
degeneracy of the eigenvalue λq. The corresponding eigenspace of eigenvalue λq is denoted
Vλq ⊂ HN . Thus the dimension of Vλq is the degeneracy of λq. The spectral representation
of A is then

A =
∑
q

λq

(∑
x∈Eλq

|x〉〈x|
)

=
∑
q

λqPλq (24)

where we have defined the projector onto the eigenspace Vλq by

Pλq :=
∑
i∈Eλq

|x〉〈x|. (25)

Exercise 0.10 Show that [Pλp , Pλq] = 0 for all p, q, and that
∑

q Pλq = 1.

We say that the Pλq form a complete orthogonal set of projectors.

Exercise 0.11 Show that Vλp is orthogonal to Vλq for all p 6= q.

7

The eigenspaces provide an orthogonal decomposition of HN , which we write as follows.
If there are M ≤ N distinct eigenvalues, then

HN = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ VλM , (26)

where the ⊕ denotes the direct sum of vector spaces. Note that vector space dimensions
add under direct sum, so N =

∑M
p=1 dλp .

Exercise 0.12 Consider a 3-dimensional Hilbert space,H3, with orthonormal basis {|j〉, j =
0, 1, 2} with respect to which the hermitian operator A has matrix elements

A =

 17 −7(1− i)
√

2 7i
√

3

−7(1 + i)
√

2 −4 −7(1− i)
√

6

−7i
√

3 −7(1 + i)
√

6 3

 .

Find the eigenvalues, λa, and an orthonormal basis of eigenvectors, {|j′〉, j = 1, 2, 3}, of A.
What are the degeneracies of the eigenvalues? Write the matrix elements of the projectors
onto the eigenspaces, Pλa , in the {|j〉} basis, and verify the spectral representation (24) of
A.

Physical interpretation of vectors and operators in quantum mechanics

All the above linear algebra is important because, in a nutshell, vectors in Hilbert spaces
encode the physical state of a quantum system, hermitian operators encode the possible
experimental observations on those systems, projectors encode the possible outcomes of
those experiments, and unitary operators encode the dynamical evolution of systems which
are isolated from outside influences (like experimental observation). We will now state this
dictionary between quantum physics and linear algebra more precisely. These are often called
the axioms of quantum mechanics.

I. The physical state of a system is a vector, |ψ〉, in a Hilbert space which is normalized:
〈ψ|ψ〉 = 1. The overall phase of a state vector is physically unobservable. That is, two
normalized vectors |φ〉 and |ψ〉 satisfying |φ〉 = eiθ|ψ〉 for any real θ describe the same
physical state.

II. An observable (or, physically allowed measurement) is a choice of a hermitian operator,
M . By the spectral theorem, M =

∑
a µaPµa , where µa are its eigenvalues and Pµa are

the orthogonal projection operators onto their corresponding eigenspaces.

III. The only possible outcomes of measuring M are one of its eigenvalues. I denote this
outcome of this measurement by “M = µa”.

IV. The probability of observing a given possible outcome, M = µa, of such a measurement
is the norm-squared of the projection of the state onto the eigenspace of the eigenvalue
µa. In formulas, this is

P(M=µa) = 〈ψ|Pµa |ψ〉 = ‖Pµa |ψ〉 ‖
2 . (27)

8

V. Once we observe the outcome M = µa, the state changes as a result of the mea-
surement from its state |ψ〉 immediately before the measurement, to a new state
|ψ′〉 immediately after the measurement, given by its normalized projection onto the
eigenspace corresponding to the observed eigenvalue. In formulas, this is

|ψ〉 meas. M=µa−−−−−−−→ |ψ′〉 =
Pµa|ψ〉√
P(M=µa)

=
Pµa |ψ〉
‖Pµa |ψ〉‖

. (28)

VI. The dynamical evolution (i.e., change with time) of the state of an isolated system
(i.e., when it is not being measured or otherwise interacting with the external world)
from an initial state |ψ〉 to a later state |ψ′〉 is given by

|ψ′〉 = U |ψ〉, (29)

where U is a unitary operator that depends on the physical system in question.

Note that the expectation value of an observable M on a state |ψ〉,

〈M〉 = 〈ψ|M |ψ〉, (30)

does not give the value of a measurement of M ! Rather it gives the average value of
measurements of M on many identical systems all prepared in the state |ψ〉. We see this
as follows. By definition, the expectation value of a measurement of M is the average of
its possible outcomes weighted by their probabilities. Thus, 〈M〉 =

∑
a µaP(M=µa) =∑

a µa〈ψ|Pµa |ψ〉 = 〈ψ| (
∑

a µaPλa) |ψ〉 = 〈ψ|M |ψ〉, proving (30), where we used axioms II-
IV.

There is one more rule of quantum mechanics, which governs how larger systems are built
up from smaller ones:

VII. The Hilbert space, H, describing the states of a system which is made up of two
subsystems which are described by vectors in Hilbert spaces H1 and H2 is given by
the tensor product

H = H1 ⊗H2. (31)

We will discuss tensor products of Hilbert spaces in more detail below.

0.2 Single qubit gates and Pauli matrices

Talking about the time evolution of a quantum system in terms of “gates” (instead of in terms
of a differential equation in time, like the Schrodinger equation) is just a way to simplify
the problem: we break the system into small pieces, the qubits, and their interaction into
localized pieces which we call gates, and the time evolution into discrete steps. By doing
this we effectively map general quantum dynamics onto a quantum analog of a classical
computer: qubits replace bits, gates replace gates, and the discretized time step is the analog
of the “clock rate” of a classical computer. Thus we can think of “quantum computers” and
“quantum algorithms” (i.e., an arrangement of qubits and gates together with a set of

9

measurements) as a kind of language for describing and exploring general kinds of quantum
mechanical evolution.

We have seen that a single qubit is a normalized vector |ψ〉 ∈ H2 which can be written

|ψ〉 = α0|0〉+ α1|1〉 =
∑
a∈F2

αa|a〉, αa ∈ C,
∑
a∈F2

|αa|2 = 1, (32)

where {|a〉, a ∈ F2} is some chosen orthonormal basis of H2. Here we have introduced a
shorthand notation

F2 ≡ {0, 1}, (33)

the set with the two elements 0 and 1. (The name comes from the fact that this set of integers
is, mathematically, the field with two elements, ie, it is closed under addition and multipli-
cation mod 2 and their inverses.) With respect to this basis, called the computational
basis, we can also represent this qubit as the column matrix

|ψ〉 ↔
(
α0

α1

)
. (34)

In particular, we have |0〉 ↔
(
1
0

)
and |1〉 ↔

(
0
1

)
.

A single qubit quantum gate is a unitary operator

U : H2 → H2. (35)

The action of the unitary operator U on a qubit tells how the qubit changes during a given
time interval. The operator U is completely determined by its matrix elements Uab = 〈a|U |b〉
in an orthonormal basis. This is because its action on any qubit is given by

U |ψ〉 = 1 · U(α|0〉+ β|1〉) =
(
|0〉〈0|+ |1〉〈1|

)
(αU |0〉+ βU |1〉)

= (U00α + U01β)|0〉+ (U10α + U11β)|1〉. (36)

In matrix notation this becomes

U |ψ〉 ↔
(
U00 U01

U10 U11

)(
α
β

)
. (37)

We can also characterize U without referring to a state which it acts on:

U = 1 · U · 1 =
(∑

a

|a〉〈a|
)
U
(∑

b

|b〉〈b|
)

=
∑
ab

Uab|a〉〈b| ↔
(
U00 U01

U10 U11

)
. (38)

In particular,

|0〉〈0| ↔
(
1 0
0 0

)
, |0〉〈1| ↔

(
0 1
0 0

)
, |1〉〈0| ↔

(
0 0
1 0

)
, |1〉〈1| ↔

(
0 0
0 1

)
. (39)

We now list some of the commonly-used single qubit gates.

10

Name symbol operator matrix

Identity I = |0〉〈0|+ |1〉〈1|
(

1 0
0 1

)
Pauli-X X X = |1〉〈0|+ |0〉〈1|

(
0 1
1 0

)
Pauli-Y Y Y = i|1〉〈0| − i|0〉〈1|

(
0 −i
i 0

)
Pauli-Z Z Z = |0〉〈0| − |1〉〈1|

(
1 0
0 −1

)
Phase φ φ = |0〉〈0|+ eiφ|1〉〈1|

(
1 0
0 i

)
Hadamard H H = 1√

2

∑
a,b∈F2

(−)ab|a〉〈b| 1√
2

(
1 1
1 −1

)
.

You should be able to easily verify that they are all unitary.
The first four gates, I, X, Y , and Z, are especially useful. Their matrix forms are the

identity matrix and the three Pauli matrices, often denoted σj, j = 1, 2, 3 in the physics
literature. It is easy to see that they form a real basis of 2 × 2 hermitian matrices. That
is, any 2× 2 hermitian matrix can be written uniquely as a real linear combination of these
four matrices. Moreover, these are also unitary operators. Unlike hermitian operators, linear
combinations of unitary operators are not unitary, in general. Although any unitary operator
can be realized as an exponential of a hermitian operator, this is not very useful for building
a quantum circuit out of Pauli gates since exponentiation involves an infinite sum of terms.
There are a raft of useful Pauli matrix identities — they are always easy to check in the
matrix representation. The most basic ones, which are worth memorizing, are

1 = X2 = Y 2 = Z2,

XY = −Y X, Y Z = −ZY, ZX = −XZ, (40)

XY = iZ, Y Z = iX, ZX = iY.

Exercise 0.13 Verify these identities.

The Hadamard gate will also play a prominent role in what follows. Some useful identities
which it satisfies are

1 = H2,

H|a〉 = 1√
2

(|0〉+ (−)a|1〉) for a ∈ F2, (41)

H = 1√
2
(X + Z),

X = HZH, Z = HXH.

Exercise 0.14 Verify these identities.

Although we have not exhaustively treated single qubit gates, we have enough to do some
interesting things. We now expand our vision to deal with multiple qubit gates.

11

Exercise 0.15 Show that the following sequence of gates,

2θ φ+(π/2) −θ −θ|0〉 H H X X |ψ〉 (42)

acting on input |0〉 gives |ψ〉 = cos θ|0〉+ eiφ sin θ|1〉. So this sequence of gates takes us from
|0〉 to a general point on the Bloch sphere.

0.3 Tensor products

The tensor product operation on Hilbert spaces is how we put subsystems together to form
larger systems in quantum mechanics. In particular, a quantum computer using n qubits
will act a Hilbert space which is the n-fold tensor product of single-qubit Hilbert spaces. For
example, a circuit with two qubits of input is, schematically,

|ψ〉
gates

|φ〉
(43)

We write the input state of this circuit as

|ψ〉 ⊗ |φ〉 ≡ |ψ〉|φ〉 ≡ |ψ, φ〉. (44)

These are three different notations for the same thing, the tensor product of the states. Note
that the tensor product is not commutative:

|φ〉|ψ〉 6= |ψ〉|φ〉. (45)

The order matters! A generally followed convention is that the order of factors in the tensor
product from left to right is the same as the order of the qubit lines in a circuit diagram
from top to bottom.

Each of the input states is in its own private H2. The space of all 2-qubit states is written

H2 ⊗H2. (46)

One important mathematical condition that we impose on this tensor product is that it is
bilinear, i.e., it is linear in each of the two qubits separately. In formulas, this says that

(|ψ〉+ |ξ〉)|φ〉 = |ψ〉|φ〉+ |ξ〉|φ〉,
|ψ〉(|φ〉+ |ξ〉) = |ψ〉|φ〉+ |ψ〉|ξ〉, (47)

α(|ψ〉|φ〉) = (α|ψ〉)|φ〉 = |ψ〉(α|φ〉).

It follows from this that H2⊗H2 is itself a vector space. In particular, if {|La〉, a ∈ F2} is a
basis of the left H2 factor and {|Rb〉, b ∈ F2} is a basis of the right H2 factor, then {|La〉 ⊗
|Rb〉 ≡ |LaRb〉, a, b ∈ F2} is a basis of H2 ⊗H2. In particular, if we take the computational
bases for each H2 factor, then the computational basis for H2 ⊗H2 is {|00〉, |01〉, |10〉, |11〉}.

12

This can easily be extended to an arbitrary number of tensor product factors. The tensor
product of n qubits,H⊗n2 = H2⊗· · ·⊗H2 n times, has computational basis {|a1a2 · · · an〉, aj ∈
F2}. (Recall the definition (33) of F2.) So we see that the dimension of H⊗n2 is 2n. In general,
dimensions multiply under tensor products.

Tensor products also inherit an inner product from their factors. In particular, if |a1· · ·an〉
∈ H⊗n2 and |b1 · · · bn〉 ∈ H⊗n2 , then we define

〈a1 · · · an|b1 · · · bn〉 = 〈a1|b1〉 · · · 〈an|bn〉, (48)

and extend this to all states of H⊗n2 by linearity.

Exercise 0.16 Show that the computational basis of H⊗n2 is an orthonormal basis, ie,

〈a1 · · · an|b1 · · · bn〉 = δa1b1 · · · δanbn . (49)

The computation basis vectors, |a1a2 · · · an〉, are unwieldly to write when n is large. There
is a clever shorthand: each basis state is labelled by the sequence of n 0’s or 1’s — a1a2 · · · an
— which can be thought of as an integer in binary notation running from 00 · · · 0 up to
11 · · · 1. In other words, they run over the integers x ∈ {0, 1, 2, . . . , 2n−1}. Thus we often
will notate the computational basis of H⊗n2 by the set {|x〉, x = 0, . . . , 2n−1}. For example,
when n = 3, we write

|000〉 = |0〉
|001〉 = |1〉
|010〉 = |2〉
|011〉 = |3〉
|100〉 = |4〉
|101〉 = |5〉
|110〉 = |6〉
|111〉 = |7〉.

Note that in this notation, the orthonormality condition (49) becomes simply 〈x|y〉 = δx,y.
Using this notation we can write the general state in H⊗n2 as a linear combination of its

basis vectors,

|ψ〉 =
2n−1∑
x=0

ψx|x〉, (50)

for some complex numbers ψx. For |ψ〉 to be normalized, we must have
∑

x |ψx|2 = 1.
Operators on tensor product spaces can be built up from operators on each factor in a

similar fashion. For example, if

A : H2 → H2, and B : H2 → H2 (51)

13

are any linear operators acting on a qubit, then a new linear operator, A ⊗ B acting on
H2 ⊗H2, is defined by the rule

(A⊗B)|ψ〉 ⊗ |φ〉 = (A⊗B)|ψ, φ〉
:= (A|φ〉)⊗ (B|ψ〉) , (52)

for any states |φ〉, |ψ〉 ∈ H2, and extended by linearity to all states of H2 ⊗H2.

Exercise 0.17 Show that

(1⊗ A)|ψ, φ〉 = |ψ〉 ⊗ A|φ〉,
(A⊗ 1)|ψ, φ〉 = A|ψ〉 ⊗ |φ〉,
(0⊗ A)|ψ, φ〉 = 0. (53)

Exercise 0.18 Show that if A and B are unitary, that A ⊗ B is unitary. Show that if A
and B are hermitian, that A⊗B is hermitian.

In the computational basis, an operator A is given by a 2× 2 matrix Aab = 〈a|A|b〉 with
a, b ∈ F2, and similarly for B,

A↔
(
A00 A01

A10 A11

)
, B ↔

(
B00 B01

B10 B11

)
. (54)

With respect to the |ij〉 computational basis of H2⊗H2, the tensor product operator A⊗B
is a 4× 4 matrix with matrix elements

(A⊗B)ab,cd = 〈a, b|A⊗B|c, d〉 = 〈a|A|c〉 〈b|B|d〉 = AacBbd. (55)

So, as a matrix, we have

A⊗B ↔


A00B00 A00B01 A01B00 A01B01

A00B10 A00B11 A01B10 A01B11

A10B00 A10B01 A11B00 A11B01

A10B10 A10B11 A11B10 A11B11

 , (56)

which can also be written in 2× 2 block form as

A⊗B ↔
(
A00B A01B
A10B A11B

)
, where B =

(
B00 B01

B10 B11

)
. (57)

Exercise 0.19 Show that

X ⊗ Y =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 and Y ⊗X =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 . (58)

Note that this shows explicitly that X ⊗ Y 6= Y ⊗X.

This definition and examples are easily generalized from 2 to an arbitrary number, n,
qubits. But since the dimension of H⊗n2 increases exponentially with n, writing the matrix
expressions for operators on tensor product spaces quickly becomes useless.

14

0.4 Entanglement

The computational basis elements of a tensor product space, like H⊗n2 , are themselves tensor
products of individual vectors in each factor, |a1a2 · · · an〉 = |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉. The
general state in H⊗n2 is a linear combination of these basis states. Can the general state also
be factorized into a tensor product of states in each factor? The answer is no.

We’ll prove this in the case of H2 ⊗H2. First, let’s look at a typical example. Consider
the state

|β00〉 :=
1√
2

(|00〉+ |11〉) , (59)

often called the EPR state. It and related states will play a prominent role in future
sections. We ask: Do there exist states |φ〉, |ψ〉 ∈ H2 such that |β00〉 = |φ〉|ψ〉? The most
general possible form of |φ〉 and |ψ〉 are

|φ〉 = α|0〉+ β|1〉, |ψ〉 = γ|0〉+ δ|1〉, (60)

for some complex numbers α, β, γ, δ. Then

|φ〉|ψ〉 = (α|0〉+ β|1〉) (γ|0〉+ δ|1〉)
= αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉. (61)

Comparing to (59), we see that |β00〉 = |φ〉|ψ〉 if and only if there is a solution to the equations

αγ = βδ = 1, and αδ = βγ = 0. (62)

But the first equalities imply that none of α, β, γ, δ can vanish, while the second equalities
imply that at least two of them do vanish. This is a contradiction, so no solution to these
equations exist, and the EPR state cannot be factorized.

A multi-qubit state which cannot be factorized into a product of states of each qubit
is called an entangled state. This property of entanglement has no analog in classical
mechanics. It should be thought of as a “new” feature of quantum mechanics, or as a
resource that quantum computation can take advantage of that classical computers don’t
have access to.

We will now show that almost every state in H2 ⊗ H2 is entangled. The most general
state in H2 ⊗H2 can be written as

|χ〉 = ζ00|00〉+ ζ01|01〉+ ζ10|10〉+ ζ11|11〉, (63)

for some complex numbers ζij. The condition that |χ〉 is unentangled, ie, that |χ〉 = |φ〉|ψ〉
with |φ〉 and |ψ〉 some 1-qubit states as in (60) is that (63) equals (61), or,

ζ00 = αγ, ζ01 = αδ, ζ10 = βγ, ζ11 = βδ. (64)

This can be rewritten as the matrix equation(
ζ00 ζ01
ζ10 ζ11

)
=

(
α
β

)(
γ δ

)
. (65)

15

Note that the determinant of the right hand side always vanishes. (In fact, the vanishing of
this determinant is also a sufficient condition for it being written in this factorized form.)
Thus the condition for |χ〉 to factorize is that γ00γ11−γ01γ10 = 0. This condition is therefore
satisfied by only a 3-complex-dimensional subset of the 4-complex-dimensional space of H2⊗
H2 states. Thus almost every state in H2 ⊗H2 is entangled.

This can be easily generalized to arbitrary tensor products. There are various quantitative
measures of how entangled a given state is, ie, how “far” it is from being a factorized
state. These measures are generally called entanglement entropy. We will not pursue the
development of this subject further in this course, but you should be aware that the study of
entanglement entropies of various sorts and in various systems is a very large part of current
research on quantum information.

16

Part I

Quantum Circuits
You have had a basic introduction to quantum mechanics, have studied the single qubit in
some detail, and have worked with several of the operators that are important in quantum
mechanics. Our next goal is to address some of the simple quantum circuits constructed from
quantum gates, and then from there, to construct quantum algorithms. Quantum algorithms
are combinations of quantum circuits with measurements and classical computations to solve
certain problems. Even some of the simplest quantum algorithms use many qubits, and so
can be complicated to analyze and describe.

1 Simple circuits

1.1 The no-cloning theorem, controlled-NOT and related gates

The no-cloning theorem is a basic no-go statement about possible quantum circuits. In
particular, it states that there is no possible quantum circuit that can copy a qubit (or any
multi-qubit quantum state, for that matter). By “copy” we mean the following. A quantum
copy machine is a circuit that behaves like

|ψ〉
U

|ψ〉

|0〉 |ψ〉
(66)

That is, it takes a state |ψ〉|0〉 as input and outputs |ψ〉|ψ〉, where |ψ〉 is any state (in a
given Hilbert space) and |0〉 is some fixed reference state.

We now show that this is impossible — ie, that no unitary U exists with this property
— by supposing such a unitary U does exist, and finding a contradiction. If U exists, then
U |ψ, 0〉 = |ψ, ψ〉 and U |φ, 0〉 = |φ, φ〉 for any two states |ψ〉 and |φ〉. Take the hermitian
conjugate of the second equation and then take the inner product of the two equations to
get

〈φ, 0|U †U |ψ, 0〉 = 〈φ, φ|ψ, ψ〉. (67)

The left side is

〈φ, 0|U †U |ψ, 0〉 = 〈φ, 0|ψ, 0〉〈φ|ψ〉〈0|0〉 = 〈φ|ψ〉, (68)

where in the first step we used that U is unitary, and in the last step we used that |0〉 is
normalized. The right side of (67) is

〈φ, φ|ψ, ψ〉 = 〈φ|ψ〉〈φ|ψ〉 = 〈φ|ψ〉2. (69)

Equating the left and right sides we then see that 〈φ|ψ〉 = 〈φ|ψ〉2, which only has the
solutions

〈φ|ψ〉 = 0 or 1. (70)

17

But we supposed |φ〉 and |ψ〉 to be any two states, so, in particular, 〈φ|ψ〉 can be any complex
number with norm less than or equal to 1 (since |φ〉 and |ψ〉, as states, are normalized). This
contradiction with (70) proves the no-cloning theorem.

Notice that the proof of the theorem does not prevent us from cloning an orthonormal
basis of Hilbert space. That is, since all states in an orthonormal basis satisfy (70) (by
definition), it is perfectly possible to construct a unitary U which clones only these states.
Let us demonstrate this for two qubits by defining the controlled-NOT gate, which we’ll
denote “CN”, and whose circuit diagram is

CN = . (71)

We can define it by its action on the computational basis,

CN |00〉 = |00〉, CN |01〉 = |01〉, CN |10〉 = |11〉, CN |11〉 = |10〉. (72)

Note that it does nothing to the first qubit, but if the first qubit is |1〉 it flips the second
qubit. This action on the computational basis can be neatly described diagrammatically as

|a〉 |a〉

|b〉 |b⊕ a〉
a, b ∈ F2. (73)

Here we use the ⊕ sign to denote addition in F2, ie, addition modulo 2:

0⊕ 0 := 0, 0⊕ 1 := 1, 1⊕ 0 := 1, 1⊕ 1 := 0. (74)

We say that the flip of the second qubit is controlled by the first qubit. If we have N qubits,
labelled by i = 1, . . . , N , we might specify a controlled-NOT gate as CiNj to mean the flip
of the jth qubit is controlled by the ith qubit. Thus, for example,

C1N2 = and C2N1 = . (75)

Exercise 1.1 Write CN as a 4× 4 matrix in the computational basis and verify that it is
unitary.

Writing n-qubit gates out as 2n×2n matrices — even for n as small as 2 — is mind-numbing
torture. An often better way is to write them as operators. Noting that |a〉〈b| for a, b
labelling orthonormal basis vectors is an operator which maps the basis vector |b〉 to |a〉, and
maps all other basis vectors to zero, it is immediate from (72) that

CN = |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10|. (76)

Using the hint from (73), this can be written more compactly as

CN =
∑
a,b∈F2

|a, b⊕a〉〈a, b|. (77)

18

You should become familiar with these manipulations so that going between the equivalent
definitions (72), (73), (76), and (77), becomes an easy exercize.

Now compare the effect of the controlled-NOT gate with input |a, 0〉,

|a〉 |a〉

|0〉 |a〉
a ∈ F2. (78)

to that of a putative quantum copier, (66). The difference is that the controlled-NOT gate
only has this “copying” output when |a〉 is a basis state.

Exercise 1.2 Compute the output state of the controlled-NOT gate if the input state is
|ψ, 0〉 where |ψ〉 = α|0〉+ β|1〉 is a general 1-qubit state.

Exercise 1.3 Compute the output state of the controlled-NOT gate if the input state is
|ψ, φ〉 where |ψ〉 = α|0〉+ β|1〉 and |φ〉 = γ|0〉+ δ|1〉 are general 1-qubit states.

Some “fun” with controlled-NOT gates. The controlled-NOT gate satisfies a few
simple and useful identities.

Exercise 1.4 Show that (CN)2 = 1. That is, show that

= . (79)

Exercise 1.5 Show that

C1N2 =
1

2
(1⊗ 1 + Z ⊗ 1 + 1⊗X − Z ⊗X),

C2N1 =
1

2
(1⊗ 1 + 1⊗ Z +X ⊗ 1−X ⊗ Z). (80)

The following combination has its own symbol,

= , (81)

and is called the swap gate, and we’ll denote it by the unitary operator Uswap. Let us
compute its effect on the computational basis.

Uswap|a, b〉 = C1N2 · C2N1 · C1N2|a, b〉
= C1N2 · C2N1|a, b⊕a〉
= C1N2|a⊕b⊕a, b⊕a〉 = C1N2|b, b⊕a〉
= |b, b⊕a⊕b〉 = |b, a〉, (82)

so it swaps the first and second qubits, at least if they are basis states.

19

Exercise 1.6 Show that Uswap|φ, ψ〉 = |ψ, φ〉, so the swap gate in facts swaps all tensor
product (unentangled) 2-qubit states.

Finally, there is a nice relationship between the C1N2, C2N1, and the Hadamard gates:

H H

H H

= . (83)

As an operator equation this is

(H ⊗H)C1N2(H ⊗H) = C2N1. (84)

We prove this by using the identities (80). Then the left side becomes

(H ⊗H)C1N2(H ⊗H) = 1
2
(H ⊗H)(1⊗ 1 + Z ⊗ 1 + 1⊗X − Z ⊗X)(H ⊗H)

= 1
2
(H ⊗H + (HZ)⊗H +H ⊗ (HX)− (HZ)⊗ (HX))(H ⊗H)

= 1
2
(H2⊗H2 + (HZH)⊗H2 +H2⊗(HXH)− (HZH)⊗(HXH))

= 1
2
(1⊗ 1 +X ⊗ 1 + 1⊗ Z −X ⊗ Z)

= C2N1, (85)

where in the second-to-last line we used the identities H2 = 1, HZH = X, and HXH = Z
from (41), and in the last line we used (80).

Other controlled gates. The controlled-NOT gate can be generalized to any m-qubit
gate, U , to give an (m+1)-qubit controlled-U gate, denoted by the operator CU , and the
circuit diagram

m m
U

. (86)

(Here the m symbol is a shorthand for m qubits.) The idea is that CN does nothing to
the last (bottom) m qubits if the first (control, or top) qubit is in the computational basis
state |0〉, while it performs the U operation on the last m qubits if the control qubit is |1〉.
This can be summarized by the equation

CU = (|0〉〈0|)⊗ 1 + (|1〉〈1|)⊗ U, (87)

where the second factor in the tensor product refers to the m-qubit Hilbert space H⊗m2 .
Thus, the “1” in the first term is the identity operator on H⊗m2 , and the “U” in the second
term is the unitary operator U acting on H⊗m2 .

Exercise 1.7 Show that CU is unitary if U is unitary.

Exercise 1.8 Show that CN = CX, ie, that the controlled-NOT gate is the same as the
controlled-X gate.

20

Exercise 1.9 Show that the controlled-phase gate, Cφ,

φ
(88)

acts on the computational basis as

Cφ|a, b〉 = eiabφ|a, b〉, a, b ∈ F2. (89)

Exercise 1.10 Show that

= π
2

π
2H H

. (90)

We can also control a gate from more than one qubit. For instance, the Toffoli gate,
denoted CCN , is a NOT gate controlled by two qubits. Its circuit diagram and action on a
computational basis is given by

|a〉 |a〉
|b〉 |b〉

|c〉 |c⊕ ab〉

. (91)

Exercise 1.11 Show that

=
π
2

−π
2

π
2H H

. (92)

1.2 Quantum teleportation and encryption

We now turn to the simplest quantum circuits which hint at the potential for quantum
computation to perform tasks beyond the capability of classical computation. A new feature
of these circuits compared to what we’ve discussed so far is that they involve measurements
of qubits. These circuits, called quantum teleportation and quantum encryption (also
called superdense coding) are not really examples of quantum computation. They are
better described as quantum information processing since the interesting aspects of
these circuits has to do with communication of information and the conversion of classical
to quantum information (ie, classical bits to qubits) and vice versa. They are simple enough
(and interesting enough) that they have actually been implemented experimentally, and even
commercially.

The teleportation and encryption circuits use the properties of entangled states in a
crucial way. So it is convenient to start by analyzing a simple “entangler” gate defined by

E :=
H

. (93)

21

It is easy enough to compute how E acts on the computational basis,

|βab〉 := E|a, b〉 = CN(H ⊗ 1)|a, b〉
= 1√

2
CN(|0, b〉+ (−)a|1, b〉)

= 1√
2
(|0, b〉+ (−)a|1, b⊕1〉), (94)

where in the second line I used the action of H given in (41) and in the last line I used the
action of CN given in (72). We have given a special name, |βab〉, to these four resulting
states because they turn out to be so useful. We write them out explicitly:

|β00〉 = 1√
2
(|00〉+ |11〉),

|β01〉 = 1√
2
(|01〉+ |10〉),

|β10〉 = 1√
2
(|00〉 − |11〉),

|β11〉 = 1√
2
(|01〉 − |10〉). (95)

We see that |β00〉 is just the entangled EPR state introduced earlier; the other three are also
entangled states.

Exercise 1.12 Calculate the output of E(|ψ〉|0〉),

|ψ〉 H

|0〉
(96)

when |ψ〉 = α|0〉+ β|1〉.

Exercise 1.13 Calculate the output of

|ψ〉 H

|0〉

|0〉

(97)

when |ψ〉 = α|0〉+ β|1〉.

Exercise 1.14 Show that

E−1 :=
H

(98)

is the inverse of E, ie, that E−1E = 1.

22

Measurements in the computational basis. We now add in measurements. In general,
we can measure any hermitian operator, M . The possible results of the measurement are
the eigenvalues of M , and the probability of a given eigenvalue being observed is given by
the length-squared of the component of the state in the eigenspace corresponding to that
eigenvalue. It turns out to be enough to consider just one very simple basic measurement,
M = P1, on a single qubit. The measurement operator is defined by its action on the
computational basis of a single qubit,

P1|a〉 = a|a〉, a ∈ F2. (99)

Obviously, the eigenvectors of P1 are the computational basis vectors, |a〉, a ∈ F2, and their
eigenvalues are just a ∈ F2, ie, either 0 (for |0〉) or 1 (for |1〉). The circuit diagram for such
a measurement is

. (100)

We call this “measuring in the computational basis.”
If we have a qubit in state |ψ〉 = α0|0〉 + α1|1〉, then measuring it in the computational

basis will give result “0” with probability |α0|2 and result “1” with probability |α1|2, which
we’ll describe by writing Prob(a=0) = |α0|2, etc. Thus the result of a computational ba-
sis measurement is a classical bit, a ∈ F2. We denote the outcome of the measurement
diagrammatically by

a
, (101)

where the outcome a ∈ F2 is written above the meter symbol.
Upon performing a measurement, the qubit state is changed to the eigenvector corre-

sponding to the observed outcome. In other words, if we measure and find “0”, the qubit
state becomes |0〉, and if we observe the result “1”, the qubit state becomes |1〉. Diagram-
matically,

a
α|0〉+β|1〉 |a〉 . (102)

This is sometimes called the “collapse of the wave function”. It should be clear that all
the interesting information in the original qubit state — namely, the values of the complex
coefficients α and β — is lost upon measurement. For this reason, we are generally not
interested in the qubit state after a measurement, and typically discard the qubit from
further consideration. The interesting qubit information encoded in α and β is transferred
to the probabilities of the a = 0 or 1 outcomes occurring. (Note that that these probabilities
are not notated in the circuit diagram: you will have to compute them for yourself when
analyzing a given circuit.) Thus the interesting output of a measurement is the classical
bit, a ∈ F2, encoding the observed outcome of the measurement. For this reason we usually
notate a computational basis measurement by

a
, (103)

23

where the double line on the right denotes a “classical wire” down which the classical bit a
is sent.

Now let’s see what happens when we measure many qubits separately in the computa-
tional basis,

a

b
|χ〉 . (104)

When |χ〉 is unentangled, ie, factorizes as |χ〉 = |ψ〉|φ〉, it should be easy for you to find the
probability of the possible (a, b) outcomes.

Exercise 1.15 Show that if |χ〉 = (α0|0〉 + α1|1〉)(β0|0〉 + β1|1〉), then Prob(a=0 & b=0) =
|α0β0|2, Prob(a=0 & b=1) = |α0β1|2, etc.

Since these probabilities factorize as products of probabilities for the first and second qubit
measurements separately, we see that the outcomes of the two measurements are uncorre-
lated. But for a general state,

|χ〉 =
∑
c,d∈F2

χcd|c, d〉, (105)

the same analysis tells us that

Prob(a=c& b=d) = |χcd|2, (106)

which does not factorize for an entangled state, and so the two measurements are correlated.
This is one of the hallmarks of entangled states.

Quantum encryption. The quantum encryption circuit looks like

alice

bob

b1

b2

(a1, a2)

Xa2 Za1

|β00〉

H

(b1, b2) = (a1, a2)

(107)

Here we imagine two widely-separated people, Alice and Bob, who each get one qubit from
an entangled pair in the state |β00〉. We show the qubits that Alice and Bob have access to

24

by the shaded boxes. We imagine that the entangled pair is prepared in that state, say via
an entangler gate, at some location, and then the qubits are separated and sent to Alice and
Bob. Also, Alice has two classical bits of data, (a1, a2) which she wishes to send to Bob by
physically transferring her qubit to Bob. Alice uses these two bits to determine what gates
(Xa2 then Za1) she sends her qubit through, before sending her qubit to Bob. The claim,
indicated in (107), is that after performing this transfer, if Bob sends his two qubits through
the indicated gates and performs a measurement in the computational basis on them, the
result he will observe will be Alice’s original 2 bits (a1, a2) with 100% certainty. The only
information communicated between Alice and Bob is through the transfer of Alice’s qubit.

Let us now verify that that is, in fact, how this circuit behaves. To do this analysis, it is
convenient to name some intermediate states:

b1

b2

(a1, a2)

Xa2 Za1

|β00〉

H

(b1, b2) = (a1, a2)

1 2 3

(108)

We denote by |χj〉 the state of the qubits at the jth slice. From now on the a, b, c, d, e indices
are understood to be in F2. The initial state is |β00〉 = 1√

2

∑
b |bb〉, so

|χ1〉 = Za1Xa2|β00〉 =
1√
2

∑
b

(Za1 ⊗ 1)(Xa2 ⊗ 1)|bb〉

=
1√
2

∑
b

(
Za1Xa2|b〉

)
⊗ |b〉 =

1√
2

∑
b

(
Za1 |b⊕a2〉

)
⊗ |b〉

=
1√
2

∑
b

(
(−)a1(b⊕a2)|b⊕a2〉

)
⊗ |b〉 =

1√
2

∑
b

(−)a1(b⊕a2)|b⊕a2, b〉. (109)

Here we have used the facts that

Xa|b〉 = |b⊕a〉, Za|b〉 = (−)ab|b〉, a, b ∈ F2. (110)

Exercise 1.16 Verify (110).

Since CN |a, b〉 = |a, b⊕a〉, we have for the next slice

|χ2〉 = CN |χ1〉 =
1√
2

∑
b

(−)a1(b⊕a2)CN |b⊕a2, b〉

=
1√
2

∑
b

(−)a1(b⊕a2)|b⊕a2, b⊕b⊕a2〉 =
1√
2

∑
b

(−)a1(b⊕a2)|b⊕a2, a2〉, (111)

25

where in the last step we used that a ⊕ b ⊕ b = a in mod 2 arithmetic. Next, using that
H|a〉 = 1√

2
(|0〉+ (−)a|1〉), we get for the final slice

|χ3〉 = (H ⊗ 1)|χ2〉 =
1√
2

∑
b

(−)a1(b⊕a2)(H ⊗ 1)|b⊕a2, a2〉 (112)

=
1√
2

∑
b

(−)a1(b⊕a2)
(
H|b⊕a2〉

)
⊗ |a2〉 =

1

2

∑
b

(−)a1(b⊕a2)
(
|0〉+ (−)b⊕a2|1〉

)
⊗ |a2〉

=
1

2

∑
c

(−)a1c
(
|0〉+ (−)c|1〉

)
⊗ |a2〉 =

(1

2

∑
c

[
(−)a1c|0〉+ (−)c(a1+1)|1〉

])
⊗ |a2〉,

where in the second-to-last step we changed variables in the sum to c = b ⊕ a2, which is
allowed since b and c run over the same range (ie, F2) whatever the value of a2. Now

1

2

∑
c

[
(−)a1c|0〉+ (−)c(a1+1)|1〉

]
=

1

2

[
(−)0|0〉+ (−)0|1〉

]
+

1

2

[
(−)a1|0〉+ (−)a1+1|1〉

]
=

1 + (−)a1

2
|0〉+

1− (−)a1

2
|1〉

= δa1,0|0〉+ δa1,1|1〉 = |a1〉, (113)

so (112) becomes simply the computational basis state

|χ3〉 = |a1〉 ⊗ |a2〉. (114)

Therefore, upon measuring this state in the computational basis, we get the result (a1, a2)
with 100% certainty, verifying the claimed behavior of the quantum encryption circuit.

Exercise 1.17 Show that 1
2
(1 + (−)a) = δa,0 and 1

2
(1− (−)a) = δa,1.

The encryption circuit shows that, if two people share an entangled pair of qubits, then
two classical bits can be encoded in one qubit. This is why this circuit is also referred to
as “superdense coding”. The feature of this circuit which is novel compared to classical
communication channels is that if a third party, Carol, were to intercept the qubit that
Alice sends to Bob, then Carol would gain no information about the two bits (a1, a2) being
encoded.

To see this, say Carol captures the first qubit of the state |χ1〉 and measures it in the
computational basis, getting a classical bit c ∈ F2, as a result. This means that Carol
measures the observable P1 ⊗ 1, since she is assumed to have no access to Bob’s qubit.
Recall that the probability of getting c is the square of the projection of the state onto the
eigenspace of the measured eigenvalues. The eigenspace of P1 ⊗ 1 with eigenvalue c is the
2-dimensional space spanned by |c, d〉 for d ∈ F2.

Exercise 1.18 Check that |c, d〉 is an eigenstate of P1⊗ 1 with eigenvalue c for any d ∈ F2.

26

Therefore,

Prob(c) =
∑
d

|〈c, d|χ1〉|2 =
∑
d

∣∣∣∣∣ 1√
2

∑
b

(−)a1(b⊕a2)〈c, d|b⊕a2, b〉

∣∣∣∣∣
2

=
∑
d

∣∣∣∣∣ 1√
2

∑
b

(−)a1(b⊕a2)〈c|b⊕a2〉〈d|b〉

∣∣∣∣∣
2

=
∑
d

∣∣∣∣∣ 1√
2

∑
b

(−)a1(b⊕a2)δc, b⊕a2δd,b

∣∣∣∣∣
2

=
∑
d

∣∣∣∣ 1√
2

(−)a1(d⊕a2)δc, d⊕a2

∣∣∣∣2 =

∣∣∣∣ 1√
2

(−)a1c
∣∣∣∣2 =

1

2
, (115)

This result shows that the probability is 1/2 for the eavesdropper Carol to find either of
the two possible c ∈ F2 outcomes, independent of the values of a1 and a2. Thus Alice’s
transmitted qubit by itself carries no information about the encoded classical bits. This is
therefore a communication method which cannot be decoded in principle!

This is very different from the behavior of classical information processing, where com-
munication channels always carry information about the message being transferred. This
is our first indication that quantum information processing can do something qualitatively
different than what can be done just with classical bits.

Quantum teleportation. We now turn to the quantum teleportation circuit, given by

alice

bob

a1

a2

|ψ〉 H

|β00〉

Xa2 Za1 |ψ〉

(116)

Here we again imagine widely-separated Alice and Bob each sharing one qubit from an
entangled pair in the state |β00〉. Also, Alice has another (unentangled) qubit prepared
in some arbitrary state |ψ〉. The claim, indicated in (116), is that after performing the
quantum teleportation, the qubit Bob has ends up in the state |ψ〉. The only information
communicated between Alice and Bob is that Alice sends Bob 2 classical bits of information,
(a1, a2), encoding the outcome of two computational basis measurements she performs. Bob
uses these two bits to determine what gates (Xa2 then Za1) he sends his qubit through.

Let us now verify that that is, in fact, how this circuit behaves. We name some interme-

27

diate states,

a1

a2

|ψ〉 H

|β00〉

Xa2 Za1 |ψ〉

0 1 2 3

(117)

and denote by |χj〉 the state of the qubits at the jth slice. Write Alice’s first qubit state as
|ψ〉 =

∑
b∈F2

ψb|b〉. Then the initial state is

|χ0〉 = |ψ〉|β00〉 =
(∑

b

ψb|b〉
)(

1√
2

∑
c

|cc〉
)

= 1√
2

∑
bc

ψb|bcc〉, (118)

and the state at the next slice is

|χ1〉 = (H ⊗ 1⊗ 1)(CN ⊗ 1)
(

1√
2

∑
bc

ψb|bcc〉
)

= 1√
2

∑
bc

ψb(H ⊗ 1⊗ 1)(CN ⊗ 1)|bcc〉

= 1√
2

∑
bc

ψb(H ⊗ 1⊗ 1)|b, c⊕b, c〉 = 1
2

∑
bc

ψb
(
|0, c⊕b, c〉+ (−)b|1, c⊕b, c〉

)
= 1

2

∑
bcd

(−)dbψb|d, c⊕b, c〉, (119)

where in the last line we have just written sum in the previous step in a more compact form.
Now Alice performs her two measurements. If she finds (a1, a2) as the result, the result

will be that the first two qubits will be projected to those values. This projection just means
that we should keep only the termsx with d = a1 and c⊕ b = a2 in the sum, so

|χ2〉 ∝ 1
2

∑
bcd

(−)dbψb|d, c⊕b, c〉δa1,dδa2,b⊕c. (120)

Here we have indicated only that |χ2〉 is proportional to the right side, because, as always
after a projective measurement, we have to re-normalize the resulting vector so that it is a
state of norm 1. We can simplify the sum in (120) by noting that

a2 = b⊕ c if and only if c = a2 ⊕ b, (121)

which is easy to check in mod 2 arithmetic. (Just add ⊕b to both sides of the first equation

28

to get b⊕ c⊕ b = a2 ⊕ b and then use the fact that b⊕ b = 2b = 0 mod 2.) Then we get

|χ2〉 ∝ 1
2

∑
bcd

(−)dbψb|d, c⊕b, c〉δa1,dδc,a2⊕b

∝ 1
2

∑
b

(−)a1bψb|a1, a2⊕b⊕b, a2⊕b〉

∝ 1
2
|a1a2〉

(∑
b

(−)a1bψb|a2⊕b〉
)
. (122)

Exercise 1.19 Show that the norm of
∑

b(−)a1bψb|a2⊕b〉 is 1.

Therefore the normalized state at slice 2 is

|χ2〉 = |a1a2〉
(∑

b

(−)a1bψb|a2⊕b〉
)
. (123)

We drop the first two qubits, |a1a2〉, from now on, since they are not entangled and play no
further role in the circuit. The final state (slice 3) is then given by

|χ3〉 = Za1Xa2
(∑

b

(−)a1bψb|a2⊕b〉
)

=
∑
b

(−)a1bψbZ
a1Xa2|a2⊕b〉

=
∑
b

(−)a1bψbZ
a1|a2⊕b⊕a2〉 =

∑
b

(−)a1bψbZ
a1|b〉

=
∑
b

(−)a1bψb(−)a1b|b〉 =
∑
b

ψb|b〉 = |ψ〉. (124)

This finishes the demonstration that the teleportation circuit has the advertised behavior.
The teleportation circuit shows that, if two people share an entangled pair of qubits,

then one qubit can be encoded in two classical bits. The feature of this circuit which is
novel compared to classical communication channels is that if a third party, Carol, were to
intercept the two classical bits that Alice sends to Bob, then Carol would gain no information
about the state |ψ〉 being teleported.

To see this, let us calculate the probability that the classical bits (a1, a2) are measured by
Alice. Recalling that the probability of getting such a result is the square of the projection
of the state onto the eigenspace of the measured eigenvalues. The eigenspace of eigenvalues
(a1, a2) is the 2-dimensional space spanned by |a1, a2, e〉 for e ∈ F2.

Exercise 1.20 Check that |a1, a2, e〉 is an eigenstate of both P1⊗1⊗1 and 1⊗P1⊗1 (which
are the two measurements that Alice performs) with eigenvalues (a1, a2) for any e ∈ F2.

29

Therefore,

Prob(a1, a2) =
∑
e

|〈a1, a2, e|χ1〉|2 =
∑
e

∣∣∣∣∣12 ∑
bcd

(−)dbψb〈a1, a2, e|d, c⊕b, c〉

∣∣∣∣∣
2

=
1

4

∑
e

∣∣∣∣∣∑
bcd

(−)dbψbδa1,dδa2,c⊕bδe,c

∣∣∣∣∣
2

=
1

4

∑
e

∣∣∣∣∣∑
b

(−)a1bψbδb,a2⊕e

∣∣∣∣∣
2

=
1

4

∑
e

∣∣(−)a1(a2⊕e)ψa2⊕e
∣∣2 =

1

4

∑
e

|ψa2⊕e|2 =
1

4

∑
f

|ψf |2

=
1

4
. (125)

In the second-to-last step I changed the summation variable from e to f = e⊕ a2, which is
allowed since they run over the same set, F2. This result shows that probability is 1/4 to
find any of the four possible (a1, a2) bits, independent of the values of a1 and a2. Thus these
classical bits carry no information about the state |ψ〉.

Again, just as with the encryption circuit, this is very different from the behavior of
classical information processing. This is our second indication that quantum information
processing can do something qualitatively different than what can be done just with classical
bits.

2 Some basic quantum algorithms

We now introduce a few simple quantum algorithms which are illustrations of how a quan-
tum computer can solve certain problems more efficiently than classical computers. These
algorithms also illustrate a general strategy for constructing quantum algorithms. We out-
line this strategy first in somewhat heuristic terms, then illustrate it in two specific cases,
the Deutsch-Jozsa algorithm and Grover’s algorithm.

The basic strategy is to do the following sequence,

initialize→ interfere→ evaluate f → measure M.

Here by “initialize” we mean prepare the n input qubits in a given unentangled state, usually

n|0〉⊗n . (126)

By “interfere” we mean transform the input state to a superposition of both |0〉 and |1〉
for each qubit. A typical way this is done is

n n
H⊗n . (127)

Just to be clear, what we mean by the H⊗n gate is simply a Hadamard gate acting on each

30

input qubit separately,

...

n

H

H

H

. (128)

Exercise 2.1 If the input state is |0〉⊗n, show that the output of H⊗n is simply

1

2n/2

∑
ai∈Fn2

|a1a2 . . . an〉, (129)

ie, an equal superposition of all the computational basis states.

Note that this is an unentangled state. One can interfere the initial state in other ways which
involve more complicated phases than just the minus signs that appear in the Hadamard gate.
One very common way — used, for example in the Shor factorization algorithm described
later in section 5 — is to Fourier transform the initial state,

n n|0〉⊗n QFT , (130)

as will be described in detail in section 4.
The “evaluate” step means we compute some function, f , which we’ll denote by the

n-qubit gate Uf ,

n n
Uf . (131)

We will describe this kind of quantum circuit shortly.
The “measure” step denotes measurement of some or all of the qubits in the computa-

tional basis, thus giving an n-classical-bit output, M .

2.1 Function gates

A common kind of map which we want to evaluate is a function, f , from n bits to one bit,

f : F n
2 → F2, (132)

which just means that given n bits, (a1, a2, . . . , an), f computes a single output bit

b = f(a1, . . . , an), ai, b ∈ F2. (133)

31

A classical gate or circuit which does this is often written

...

a1

f

a2

b

an

, ai, b ∈ F2. (134)

But such a gate is not reversible. Furthermore, to implement it as a quantum gate it must
also be unitary.

A quantum function gate can be realized by an (n+ 1)-qubit gate, Uf , defined by

...
...

|a1〉

Uf

|a1〉

|a2〉 |a2〉

|an〉 |an〉

|b〉 |b⊕ f(a1 . . . an)〉

. (135)

In particular, if we take the last qubit input state to be |b〉 = |0〉, then the last qubit is
output in the state |f(a1 . . . an)〉, so computes the function f .

To see that such a gate is possible, we need to check that it is unitary, U †fUf = 1. This
is not too hard to show: From (135), we have

Uf |a1 . . . an, b〉 = |a1 . . . an, b⊕f〉, (136)

so we immediately read off that

Uf =
∑
ai,b

|a1 . . . an, b⊕f〉〈a1 . . . an, b|, (137)

and therefore that

U †f =
∑
ai,b

|a1 . . . an, b〉〈a1 . . . an, b⊕f |. (138)

32

Now compute

U †fUf =
(∑
ai,b

|(ai), b〉〈(ai), b⊕f(ai)|
)
·
(∑
ci,d

|(ci), d⊕f(ci)〉〈(ci), d|
)

=
∑

ai,b,ci,d

|(ai), b〉〈(ci), d|
(
〈(ai), b⊕f(ai)|(ci), d⊕f(ci)〉

)
=
∑

ai,b,ci,d

|(ai), b〉〈(ci), d|
(n∏
i=1

δai,ci

)
δb⊕f(ai),d⊕f(ci)

=
∑
ai,b,d

|(ai), b〉〈(ai), d| δb⊕f(ai),d⊕f(ai) =
∑
ai,b,d

|(ai), b〉〈(ai), d| δb,d

=
∑
ai,b

|(ai), b〉〈(ai), b| = 1, (139)

thus showing that Uf is indeed unitary. Here in the first step we changed the summation
variables in the second (Uf) factor so that they do not clash with the names of the variables

used in the first (U †f) factor. In the third line we used the orthonormality (3) of the computa-
tional basis to evaluate the bracket, and in the next three lines we simplified the sums using
the Kronecker deltas. The last step follows from the completeness (8) of the computational
basis.

So such a gate is possible. The actual construction of this gate in terms of, say, 1-
and 2-qubit gates, depends on the specific function, f , being implemented. Here is a brief
outline of one way of constructing such a gate for any given f . First, consider the function
f = δ((ai) = 1n) which is defined to be zero for all inputs except for the input a1 . . . an =
1 . . . 1 (ie, all 1’s), in which case it gives output 1. The gate which does this is the CnN
gate, ie, a controlled-NOT gate where the last qubit is controlled by the first n-qubits.
This is thus an n=1-qubit generalization of the controlled-NOT and Toffoli gates. A circuit
for the CnN gate can be constructed by generalizing the circuits given in (90) and (92).
Now consider the function f = δ((ai) = (a∗i)) which is zero for all inputs except the input
a1 . . . an = a∗1 . . . a

∗
n, where a∗1 . . . a

∗
n is a specific fixed string of n bits. Noting that the input

state |a∗1 . . . a∗n〉 can be converted to |1n〉 by acting on the jth qubit with an Xa∗j+1-gate,
we see that a circuit that implements Uδ((ai)=(a∗i))

is this arrangement of X gates followed
by the CnN gate. Finally, since any function can be written as a sum of such δ-functions,
f(a1 . . . an) =

∑
(a∗i)

δ((ai) = (a∗i)) where the sum if over all strings (a∗1 . . . a
∗
n) for which f is

1, we can therefore implement Uf for any f by concatenating these Uδ gates.
For a complicated or random enough function f , the number of gates needed to implement

Uf grows with the number of input qubits very fast, as n2·n!. So usually the step of computing
the function, ie, each use of the Uf gate, is the computationally most intensive part of an
algorithm.

2.2 Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is a very simple example showing how a quantum computation
can solve a problem efficiently which is computationally intensive for a classical computer.
The problem the Deutsch-Josza algorithm solves is one of a class of problems known as

33

decision problems, which have the general form: given a function f , determine whether
f has a certain property or not. More colloquially, decision problems are ones which ask a
yes-or-no question. The Deutsch-Jozsa problem is a fairly artificial example of a decision
problem (ie, I do not think it comes up as part of any practical problem), so its interest
is mainly as a proof of principle that quantum computation may have an advantage over
classical computation in some problems. But the way the Deutsch-Jozsa algorithm works is
very illuminating: whereas the classical algorithm has to compute the function many times
(ie, for many different inputs) to decide whether or not it has the property in question,
the quantum algorithm only has to compute the function a single time! The basic idea is
that by putting the input state into a superposition of all computational basis states (the
“interference” step), by then applying the Uf gate just once we are effectively computing
f on all its input values at once! Since it is the evaluation of f which is computationally
intensive, the quantum algorithm becomes much (exponentially) more efficient than the
classical algorithm as n gets large.

The Deutsch-Jozsa problem. Suppose we are given some function f : F n
2 → F2 and we

know in advance that it is either constant or balanced. Determine which it is.

To understand what this means, we need to define constant and balanced functions. A
function f is constant if it gives the same output for all inputs,

f constant⇔

{
either f(a1 . . . an) = 0 for all (a1 . . . an),

or f(a1 . . . an) = 1 for all (a1 . . . an).
(140)

A function is balanced if it is 0 on exactly half its inputs, and therefore 1 on the other half,

f balanced⇔ f(a1 . . . an) =


0 for half (2n−1) of the (a1 . . . an)’s,

and

1 for the other half of the (a1 . . . an)’s.

(141)

Classical algorithm. The only way to decide in general whether f is constant or balanced
is to evaluate f on half plus 1 of its possible inputs. If these evaluations give all the same
output, then f must be constant; otherwise it is balanced. Since there are 2n possible inputs,
this means that we have to evaluate f 2n−1 + 1 times.

34

Quantum algorithm. Run the circuit

c1

c2

...
...

cn

|0〉 H

Uf

H

|0〉 H H

|0〉 H H

|0〉 X H

. (142)

If the measurements give (c1c2 . . . cn) = (00 . . . 0) (all zeros) then f is constant; otherwise it
is balanced. This circuit obviously only uses the Uf gate once, so is exponentially faster than
the classical algorithm. Note also that the circuit conforms to the “interfere → evaluate →
measure” pattern advertised earlier.

To see that this circuit works as advertised, compute the state at the slice shown in red:

|ψ〉 = (H⊗n ⊗ 1)UfH
⊗(n+1)(1⊗n ⊗X)|0〉⊗n

= (H⊗n ⊗ 1)UfH
⊗(n+1)

(
|0〉⊗n ⊗ |1〉

)
=

1

2n/2
(H⊗n ⊗ 1)Uf

∑
ai∈Fn2

|a1 . . . an〉 ⊗
1√
2

(
|0〉 − |1〉

)
=

1

2n/2
(H⊗n ⊗ 1)

∑
ai∈Fn2

|a1 . . . an〉 ⊗
1√
2

(
|f(ai)〉 − |1⊕f(ai)〉

)
=

1

2n/2
(H⊗n ⊗ 1)

∑
ai∈Fn2

(−)f(ai)|a1 . . . an〉 ⊗
1√
2

(
|0〉 − |1〉

)
=

1

2n

∑
ai,bi∈Fn2

(−)f(ai)+
∑
i aibi |a1 . . . an〉 ⊗

1√
2

(
|0〉 − |1〉

)
. (143)

In the fifth line we used the identity

|f(ai)〉 − |1⊕f(ai)〉 = (−)f(ai)
(
|0〉 − |1〉

)
, (144)

and in the last line we used that

H⊗n|a1 . . . an〉 =
1

2n/2

∑
bi∈Fn2

(−)
∑
i aibi |b1 . . . bn〉. (145)

Exercise 2.2 Verify (144) and (145).

35

Now compute the probability that upon measuring the first n qubits in the computational
basis we get the result (c1 . . . cn) = (0 . . . 0):

Prob [(c1 . . . cn) = (0 . . . 0)] =
∑
d∈F2

|〈0 . . . 0, d|ψ〉|2

=
∑
d∈F2

∣∣∣∣∣∣ 1

2n
√

2

∑
ai∈Fn2

(−)f(ai)
(
〈d|0〉 − 〈d|1〉

)∣∣∣∣∣∣
2

= 2 · 1

2
·

∣∣∣∣∣∣ 1

2n

∑
ai∈Fn2

(−)f(ai)

∣∣∣∣∣∣
2

. (146)

Exercise 2.3 Justify each step in the calculation (146).

Now, the expression inside the absolute value signs in (146) is ±1 if f is constant (since then
all terms in the sum are equal) and 0 if f is balanced (since then half the terms in the sum
ate +1 and half are −1. Thus we have

Prob [(c1 . . . cn) = (0 . . . 0)] =

{
1 if f is constant,

0 if f is balanced,
(147)

which was the claimed behavior.

2.3 Grover’s algorithm

Grover’s algorithm is another example showing how a quantum algorithm can solve a problem
more efficiently than a classical computer. Grover’s algorithm solves a search problem:
given a function f : F n

2 → F2 such that f = 0 for all inputs except for a single x ∈ F n
2 for

which f(x) = 1, find x. This is called a search problem because it models the problem of
finding the object, x, in a large database F n

2 (which has N = 2n elements) which satisfies
some search criterium, encoded in the function f . If the database F n

2 is unstructured (ie,
if the function f is complicated or random enough), then a classical search requires the
evaluation of f an order O(N) times. Grover’s algorithm performs the search with only an
order O(

√
N) evaluations of f , a quadratic speed-up over the classical search.

The search problem Grover’s algorithm solves may seem artificial since it assumes we
know in advance that there is only a single element x ∈ F n

2 satisfying the search criterium
f = 1. A more reasonable search problem is to find an element satisfying f = 1 when there
may be multiple such elements in the database. Grover’s algorithm can be generalized to
this case, and performs the search with order O(

√
N/M) evaluations of f where M is the

number of elements satisfying f = 1, and the improved algorithm also determines what M
is. This is again a quadratic speed-up over a classical search. We will not describe this
generalization of Grover’s algorithm here; the generalization is an example of a quantum
counting algorithm, which are described in section 6.3 of [NC].

We will describe Grover’s algorithm for a quantum computer operating on an (n + 1)-
qubit state space. This machine therefore has a Hilbert space of dimension 2n+1 = 2n · 2.

36

We will think of this Hilbert space as the tensor product of two Hilbert spaces HN ⊗H2 of
dimensions N := 2n and 2, respectively. The HN represents our database or search space,
and the “auxiliary” H2 qubit will play a secondary role (and, in fact, can be essentially
ignored after the initialization step, though it is necessary to implement the algorithm using
quantum gates, ie, unitary operators).

Denote the computational orthonormal basis ofHN by |x〉 for x ∈ {0, 1, . . . , N−1} where,
as usual, the binary expression for x gives the n-qubit computational basis state. Denote
the computational basis of the auxiliary H2 qubit by |a〉, a ∈ F2. Thus the general basis
state of the quantum computer is |x〉|a〉, and a general state of the computer is |ψ〉 =∑N−1

x=0

∑1
a=0Cxa|x〉|a〉 for some coefficients Cxa.

Grover’s algorithm

Input: A function f : F n
2 → F2 such that f(x) = 0 for all x ∈ F n

2 except one.

Steps: 1. Prepare the machine in the initial state |ψ0〉 := |0〉⊗|0〉 and apply an H⊗n⊗HX
gate to put the machine in the uniform superposition of states with all values of
x (mod N) in the first factor, and in the state (|0〉− |1〉)/

√
2 in the second factor:

|ψ′0〉 = 1√
N

N−1∑
x=0

|x〉 ⊗ 1√
2

(|0〉 − |1〉) . (148)

2. Apply the Uf gate to the n+ 1 qubits to get:

|ψ1〉 = 1√
N

N−1∑
x=0

(−)f(x)|x〉 ⊗ 1√
2

(|0〉 − |1〉) . (149)

3. Apply an H⊗n(2|0〉〈0| − I)H⊗n gate to the first n qubits, doing nothing to the
auxiliary qubit, to get:

|ψ′1〉 = 1√
N

∑
x

(
2− (−)f(x) − 4

N

)
|x〉 ⊗ 1√

2
(|0〉 − |1〉) . (150)

4. Repeat steps 2 and 3 T times, where

T =
⌈π

4

√
N
⌉
. (151)

Output: Measure the state of the first n qubits with respect to the computational basis.
This returns a value for x ∈ F n

2 such that f(x) = 1 with high probability, namely,
P > 1− 1

N
.

We now analyze each of these steps, to verify that the circuit works as advertised.

37

Step 1 is an initialization step, which in terms of gates is

n n|0〉⊗n H⊗n

|ψ′0〉
|0〉 X H

. (152)

You should be able to easily check that |ψ′0〉 given in (148) is the output of this circuit.

Step 2 is simply an application of the Uf function gate on our n+ 1 qubits,

n n

|ψ′0〉 Uf |ψ1〉 . (153)

Again, you should be able to easily check that |ψ1〉 given in (149) is the output of this
circuit using the identity

|0⊕f(x)〉 − |1⊕f(x)〉 = (−)f(x) (|0〉 − |1〉) (154)

that you are familiar with from exercise 4.2. Note that the effect of this gate therefore
leaves the state of the last qubit unchanged, and acts only to change the sign of any
state |x〉 of the first n qubits if f(x) = 1. The rest of the circuit does not change
the last qubit, so it can essentially be ignored from now on. Since, by assumption,
f(x) = 1 for only one value, x = x∗, of x (thus x∗ is the output we are trying to get),
it follows that the state |ψ1〉 looks just like the initial state |ψ0〉 except the sign of only
that one particular |x∗〉 state is flipped. We describe this by saying that the coefficient
of |x〉 in |ψ1〉 is

amplitude(|x〉) := ax ∼

{
+1/
√
N if x 6= x∗

−1/
√
N if x = x∗

, x ∈ {0, . . . , N−1}. (155)

Thus we have singled out the desired x∗ with this step. However, if we were to measure
x at this point, we would find any value of x with equal probability since the probability
goes as the amplitude squared.

Step 3 amplifies the amplitude of |x∗〉 relative to all the other |x〉’s. It does this by applying
the gates

n n

|ψ1〉
H⊗n R H⊗n

|ψ′1〉
, (156)

where R is the operator 2|0〉〈0|− I acting on the first n qubits. It is easy to check that
R is unitary (exercise) so it can be implemented as a quantum gate. It is also not hard
to check that it gives the output |ψ′1〉 shown in (150). (The gate implementation and
check are given as exercises below.)

38

The result is that if the amplitudes of |x〉 are ax in the input state |ψ1〉, then their
amplitudes, a′x, in the output state |ψ′1〉 are

a′x = 2a− ax where a :=
1

N

∑
x

ax. (157)

This is called “inversion about the mean”. a is just the mean (or average) of the ax,
and the transformation (157) does not change the mean: a′ = a. But if N −1 of the ax
all have the same value (and N is large) then ax ∼ a for all of them, and they are left
unchanged (to leading order in 1/N) by the transformation. But the single amplitude
which is different, ax∗ , is changed by a large amount:

a′x ∼

{
a if x 6= x∗

a+ (a− ax∗) if x = x∗.
(158)

Thus, using (155) we see that

a′x ∼

{
+1/
√
N if x 6= x∗

+3/
√
N if x = x∗.

(159)

These are approximate since I have ignored terms suppressed by factors of 1/N . But,
for large N the net effect is to amplify the probability of measuring x∗ relative to any
other x by a factor of about |3|2 = 9.

But at this point the probability of measuring x∗ is thus about 9/N while that of
measuring any other x is about 1/N . For large N this is not a very significant overall
increase in the probability of obtaining x∗ in one measurement: it will still be swamped
by the probability ∼ 1− 9

N
of finding one of the other x’s.

Step 4 says to repeat the last two steps a total of T times. (Here the notation dte— called
the “ceiling of t” — simply means the smallest integer greater than or equal to t.)
Each iteration is thus

n n

|ψ′j〉 Uf

H⊗n R H⊗n

|ψ′j+1〉 for j = 0, 1, . . . , T−1. (160)

The idea is that since steps 2 and 3 amplified the relative probability of obtaining x∗
by a factor of 9, if we repeat this sequence, we will keep on amplifying the probability,
P , of obtaining x∗ until P is of order 1. Unfortunately, each successive amplification is
less than the previous one, so it takes many repetitions, namely T of them, to achieve
the maximum P . We will see that continuing with more repetitions beyond the optimal
value T actually decreases the probability P ! We will show below that the optimal T
is given by (151), and figure out what the associated maximum P is.

39

Output is the measurement step. It measures the value of x, which is possible since {|x〉} is
a computational basis for the first n qubits. Since the state of the quantum computer
is a superposition of |x〉 for all values of x, this measurement will not give a particular
answer with certainty. Instead, it will give different values of x with different proba-
bilities. So, unlike the Deutsch-Josza algorithm, Grover’s algorithm does not give the
answer with certainty, but just with some probability P , 0 < P < 1. The claim is that
P > 1− 1

N
. We will show this shortly.

Practically, what this means is that you run the algorithm, then check the answer — ie,
evaluate (classically) whether f(x) = 1 for the measured output x — and if f(x) 6= 1
then re-run the algorithm. Since the probability of a correct answer is substantial
(much greater than 1/2, in this case) you will only need to run the algorithm on
average once or twice to get a correct answer. This kind of algorithm is called a
(classical or quantum) probabilistic algorithm. Since getting the correct answer
just requires running the algorithm at most a few times, this does not change the
order-of-magnitude estimate of the computational complexity of the algorithm.

So we have the following tasks left in order to understand Grover’s algorithm:

Task 1. Implement the R gate with 1- and 2-qubit gates.

Task 2. Show that the H⊗nRH⊗n gate acting on an n-qubit state
∑

x ax|x〉 gives
∑

x a
′
x|x〉

with a′x given in (157).

Task 3. Show that repeated applications of UfH
⊗nRH⊗n amplifies the amplitude for |x∗〉

over all other |x〉’s.

Task 4. Find the maximum amplitude for |x∗〉 that can be generated in this way.

We will tackle these tasks in order.

Task 1: I’ll make task 1 easy (on me) by having you do it.

Exercise 2.4 Show that the n-qubit operator R = 2|0〉〈0| − I is unitary. (Recall that by
“|0〉” here we mean the |0〉⊗n computational basis state.)

This shows that a gate implementing R does in fact exist. We (ie, you) just have to find it
now.

Exercise 2.5 Show that for n = 2 qubits, R is implemented by the circuit

X X

X H H X

. (161)

Exercise 2.6 Generalize the circuit in the last exercise to n > 2 qubits.

40

On to task 2:

Exercise 2.7 Show that H⊗nRH⊗n = 2|χ〉〈χ| − I where |χ〉 = (1/
√
N)
∑

x |x〉 is the uni-
form superposition of all computational basis states for n qubits.

We now act on a general n-qubit state with H⊗nRH⊗n to find∑
x

a′x|x〉 := HnRHn
(∑

x

ax|x〉
)

=
∑
x

axH
nRHn|x〉 =

∑
x

ax

(
2|χ〉〈χ| − I

)
|x〉

=
∑
x

ax

(
2
N

∑
y,z

|y〉〈z| − I
)
|x〉 =

∑
x

ax

(
2
N

∑
y,z

|y〉δx,z − |x〉
)

(162)

=
∑
x

ax

(
2
N

∑
y

|y〉 − |x〉
)

= 2 1
N

(∑
x

ax

)(∑
y

|y〉
)
−
(∑

x

ax|x〉
)

= 2a
(∑

y

|y〉
)
−
(∑

x

ax|x〉
)

= 2a
(∑

x

|x〉
)
−
(∑

x

ax|x〉
)

=
∑
x

(2a− ax)|x〉.

Comparing the left and right sides gives the inversion about the mean formula (157).

Exercise 2.8 Justify every step in (162).

Exercise 2.9 Apply (157) to the initial state |ψ1〉 given in (149) to find the final state |ψ′1〉
given in (150).

Task 3 is more interesting. We saw in step 1 of the algorithm that we start with a state
in which the amplitudes of the |x〉 are all equal, ax = 1/

√
N . Then in step 2 we flip the sign

of only the ax∗ amplitude, leaving the rest unchanged. Then in step 3 we invert about the
mean which changes the ax amplitudes for x 6= x∗ all in the same way, so they stay equal.
Thus the repeated effect of steps 2 and 3 can be simplified by defining the two orthonormal
vectors

|+〉 := |x∗〉 and |−〉 := 1√
N−1

∑
x 6=x∗

|x〉, (163)

which are just the desired state, |+〉, and the equal superposition of all the undesirable states,
|−〉. Then the effect of the Uf gate is

Uf |+〉 = −|+〉, Uf |−〉 = +|−〉, (164)

since it just changes the sign of |x∗〉. You showed in exercise 4.7 that the step 3 gate is
HnRHn = 2|χ〉〈χ| − I where

|χ〉 = 1√
N

∑
x

|x〉 = 1√
N
|+〉+

√
N−1√
N
|−〉. (165)

A short calculation shows that the effect of the HnRHn gate is

HnRHn|+〉 = 2−N
N
|+〉+ 2

√
N−1
N
|−〉, HnRHn|−〉 = 2

√
N−1
N
|+〉+ N−2

N
|−〉. (166)

41

Combining (164) and (166) then shows that the effect of theHnRHnUf gates in each iteration
of step 4 of the algorithm is

HnRHnUf

(
|+〉
|−〉

)
= G

(
|+〉
|−〉

)
, with G :=

1

N

(
N − 2 −2

√
N − 1

2
√
N − 1 N − 2

)
. (167)

Exercise 2.10 Verify (166) and (167).

Now we observe a very happy fact: G is a 2-dimensional rotation matrix!

G :=

(
cos θ − sin θ
sin θ cos θ

)
with sin θ :=

2
√
N − 1

N
. (168)

Furthermore, the initial vector, |ψ′0〉, of step 1 of the algorithm is just the equal superposition
of all |x〉 basis states given in (165), which can be rewritten as

|χ〉 = sin
θ

2
|+〉+ cos

θ

2
|−〉. (169)

Exercise 2.11 Verify (168) and (169), ie, show that cos θ = (N −2)/N , sin θ
2

= 1/
√
N , and

cos θ
2

=
√
N − 1/

√
N if θ is defined by (168).

Thus, in the 2-dimensional plane spanned by |+〉 and |−〉 we have the following simple
geometrical picture of the action of the iteration step of Grover’s algorithm on the n-qubit
state:

|−〉

|+〉

|χ〉

G|χ〉

G2|χ〉

θ/2

θ

θ

Each successive iteration of G — ie, step 4 of the Grover algorithm — rotates the state
vector by an additional angle θ towards the |+〉 state, which is the target state, |x∗〉, whose
amplitude we want to amplify.

42

Task 4, our final task, is now easy. T iterations of the step 4 loop takes the state to GT |χ〉
which is at an angle (T + 1

2
)θ from the |−〉 axis. To maximize the |+〉 amplitude we therefore

want this angle to be as close to π/2 as possible and we therefore should choose

T = closest integer to

(
π

2θ
− 1

2

)
. (170)

We can easily determine this T for large N by noting from (168) that sin θ ≈ 2/
√
N , so the

angle θ is small. For small angles θ ≈ sin θ, so (170) gives T = closest integer to(π
2(2/
√
N)
−

1
2
) = dπ

4

√
Ne which is the value of T claimed in step 4 of Grover’s algorithm, (151).

Note that this value of T is optimal, in the sense that for larger T we start rotating the
state vector away from the desired |+〉 (and towards −|−〉). In fact, we can find a lower
bound on the amplitude for |+〉 at the optimal T by noting from the geometrical picture
that at the optimal T the state vector will be within an angle θ/2 of |+〉. Thus the |+〉
amplitude will be at least cos(θ/2) =

√
N − 1/

√
N , and so the probability of measuring |+〉

(ie, measuring x = x∗) is at least

P >

∣∣∣∣cos
θ

2

∣∣∣∣2 = 1− 1

N
, (171)

which was the claimed output behavior of Grover’s algorithm.

43

Part II

Cryptosystems and Shor’s Algorithm
In 1995 Peter Shor showed that a quantum computer could be used to factor large integers
in polynomial time. In fact, what he showed was a quantum algorithm for computing
the “order function” in polynomial time, a problem which is known to be equivalent to
that of factoring large integers. No classical algorithm is known for computing the order
function. This generated a huge amount of interest in the potential of quantum computing
since many public key cryptosystems — encryption methods which currently protect most
digital communication from eavesdropping — can be decoded by a third party possessing a
polynomial-time factorization algorithm.

The goal of the next three sections is to explain how public key cryptosystems work,
and how Shor’s quantum algorithm works. The mathematics of cryptosystems is basically
that of modular arithmetic, the basic ingredients of which are collected in appendix 3.4,
but which can be skipped by the un-interested student. Shor’s algorithm is essentially an
application of the quantum Fourier transform algorithm, explained in section 4. Section 5
then presents Shor’s algorithm and explains how it works in an example. The more technical
details needed to rigorously show that the algorithm works as advertised are collected in
appendix 5.3 on a (classical) algorithm for computing rational approximants and in appendix
5.4. These appendices can also be skipped by the student satisfied with just a qualitative
understanding of the algorithm.

3 Factorization, public key cryptosystems, and the or-

der function

It seems to be a mathematical fact of life that some problems are very hard to solve, but
that once the solution is given, it is easy to check that the solution is correct.4 It turns
out that if a person (“Alice”) has knowledge of the answer of such a problem, she can turn
this knowledge into an effective way of exchanging messages (information) with a stranger
(“Bob”) (who does not know the answer to the problem) in such a way that any third party
(“Carol”) intercepting the message will not be able to read it without first solving the hard
problem. This is called public key cryptography, and has become the practical basis for how
sensitive (e.g., personal, financial, political) data is transmitted on the web (and with other
technologies) today.

The basic trick is to find a way of encoding information using a hard question in such a
way that to decode it one needs the answer to the hard question, but such that the encoding
procedure is no harder than the process of checking a given answer to the hard question.

4Problems for which it is “easy” to check whether a given answer is correct are known as problems of
class NP. By “easy” we mean that it takes computational resources (gates, memory, number of steps) which
grows at most polynomially in the size of the problem; ie, if it takes N bits to state the problem, then
the computational resources needed to check the answer grows as O(Na) for some positive exponent a. A
problem of size N for which an algorithm solving it exists using computational resources which grow only
polynomially in N , is called a problem of class P. It is not known whether or not P = NP.

44

Given this encoding procedure, Alice can then make publicly available the hard question so
that if Bob wants to send her a private message, he just encodes it using Alice’s question
and sends the result to Alice. Since Alice knows the answer to the hard question, she can
decode it easily; but Carol has to do the hard work of solving the hard question.

This section is devoted to describing in some detail a simple and widely-used example of
a public key cryptosystem, namely the RSA cryptosystem (named after Rivest, Shamir, and
Adleman). It is essentially based on the hard problem of factoring an integer with a large
number of digits. Once one has an answer to this problem it is easy to check if it is right:
one simply does long division. We then show that the problem of factoring a large integer
N is (classically) computationally equivalent to computing the “order function” ord(x,N)
— “the order of x (mod N).

In general cryptosystems can be designed around many different-looking hard-to-solve
but easy-to-check problems. In fact, a solution to one of these problems also implies a
solution to all others in a wide class of problems. Thus, even though we describe here only
the RSA cryptosystem based on the factorization problem, a solution to the factorization
problem would imply the ability to “crack” a very large family of public key cryptosystems.

3.1 Factorization

Every positive integer N can be uniquely factorized into its prime factors. We will be
interested in integers N = pq which are the product of just two very large primes. We can
measure the size of an integer p by the number of its digits, which is approximately5 log p.
The factorization of large N is a hard problem in the sense that the fastest known (classical)
algorithm for factoring N is the “number field sieve” which takes a typical number of steps
∼ c exp{2(lnN)1/3(ln lnN)2/3} where c is some positive constant.

Thus, for example, if lnN = 360 (so N ∼ 10156), then the number of steps is ≈ 1020

while if lnN = 400 (so N ∼ 10173), the number of steps grows to ≈ 1021. This exponential
growth in the number of steps to factorize N is what makes the problem hard: practically,
even if your computer could typically factorize 156-digit numbers in a month, then it will
take it a couple of years to factorize 173-digit numbers.

(A less sophisticated approach gives an exp{1
2

lnN} estimate of the number of steps. We

could simply try to factor N by searching through all primes less than or equal to
√
N to

see if they divide N . By the distribution of primes theorem, there are about
√
N/ ln(

√
N)

primes less than
√
N . So if we had a list of primes, we would basically have to check on the

order of
√
N/ ln(

√
N) = e(lnN)/2/((lnN)/2) ∼ c exp{1

2
lnN − ln lnN} long divisions.)

On the other hand, the problem of checking that a given number p is indeed a factor of
N is relatively easy: one just needs to use the long division algorithm (basically Euclid’s
algorithm, reviewed below) to compute the remainder upon dividing N by p. This takes a
number of steps which just grows polynomially in the number of digits of N , and in fact are
easily and quickly computed on present day desktop computers for numbers with hundreds of

5In a decimal system the number of digits is approximately the log base 10, while in a binary system it is
the log base 2. Since log10(N) = log2(N)/ log2(10) which base is used just gives an overall constant factor.
In making estimates for large N , we may ignore these overall factors, and so may not bother to specify the
base of the logarithm.

45

millions of decimal digits (while quick—less than a second—factorization on these machines
only occurs up to about 60 decimal digits).

Furthermore, it is easy to generate factorization problems for which you know the answer,
but which are beyond the ability of others to solve. For instance, suppose you have enough
computing power to factor 60 decimal digit numbers quickly (a few seconds), so that 80
digit factorization takes years. Factorization of random 50 decimal digit numbers on your
computer quickly yields many 40+ decimal digit primes. Multipling two such primes yields
an 80+ digit N whose factorization is out of the question for your computer.

Exercise 3.1 Try factorizing N = 13 330 658 193 973 103 793 092 760 940 404 484 091 698 472
537 579 303 656 381 881 452 032 765 389 190 079 989 910 303 on your desktop until you run out
of patience. (For example, the Mathematica or Maple computer algebra systems have built
in integer arithmetic functions with up-to-date factorization algorithms.) Then show that
N is divisible by p = 334 553 312 750 864 459 873 065 680 054 129 101 461717. (It should only
take the blink of an eye.) Now generate new 80+ digit N ’s which are the product of two
40+ digit primes by the method described above.

(In 2008, the limit on factorization of “general form” numbers on a single PC with a few
months of running time was 520 bits, or about 156 decimal digits. With a few dozen PCs
this becomes 570 bits, or 171 decimal digits. The 2008 record from RSA challenges was
factorization of a 663 bit, or 200 decimal digit, number. Memory, not speed, was the limiting
factor.)

3.2 RSA cryptosystem

Let N = pq, where p and q are very large primes—e.g., 1000 bit primes. We package the
message (usually the key for a conventional cryptosystem) as an integer M with 0 < M < N
by some conventional method. We choose N so that M is coprime to N . (This is very easy,
since N has only the two prime factors p and q, so all but two possible messages shorter
than a given N will be acceptable.) We now encrypt M by computing

E = M e (mod N), (172)

where e is a randomly chosen number coprime to φ(N) = (p − 1)(q − 1). e is called the
encoding key. Then (we will show that) there is a unique decoding key d such that

M = Ed (mod N). (173)

In fact, we will show that d = e−1 (mod φ(N)).
The unusual property of this system is that knowledge of N and e does not imply knowl-

edge of d unless the factorization of N = pq is known, as we will discuss shortly. Thus,
if we assume that N is so large that factoring is not feasible, then we have the interesting
situation that the encoding and decoding keys e and d are genuinely different. This means,
for example, that Alice could post N and e on her website and anyone could send her an
encrypted message which only she, possessing d, could decrypt.

[RSA can also be used to send digital signatures, whereby Alice sends Bob the message
E = Md (mod N) and Bob computes M = Ee (mod N) using Alice’s public key e. If the

46

message makes sense, then Bob knows that it was sent by someone—i.e., Alice—knowing
the secret key d. The message is therefore authentic. When large messages are to be
authenticated, then M is the authenticator for a conventional message digest such as MD15.]

First, let’s look at a small example of the RSA recipe: Let N = pq = 11 · 13 = 143, so
that φ(N) = 10 · 12 = 120. Let the message M be 57, which is coprime to N , and let the
encoding key be e = 37, which is coprime to φ(N). Then the decoding key is d = 13, since
E = M e = 5737 = 112 (mod N), and M = Ed = 11213 = 57 (mod N). Note that d is the
inverse of e (mod φ(N)) since ed = 37 · 13 = 481 = 4 · 120 + 1 = 1 (mod φ(N)). This last
fact is not a coincidence, as we now show.

Now let’s see what is involved, mathematically, in finding d, given N and e. Combining
(172) and (173), we see that M = M ed (mod N), from which it follows that M ed−1 =
1 (mod N) (we chose M coprime to N , so M has an inverse (mod N)). Then Euler’s
theorem tells us that a d which satisfies this is one which satisfies ed − 1 = φ(N), or,
equivalently,

d is the inverse of e (mod φ(N)).

(The assumption that e was chosen coprime to φ(N) was to ensure that d exists.) We saw
that Euler’s algorithm gives an efficient way of computing modular inverses, so the problem
of finding d is thus reduced to finding φ(N) given N .

But it is easy to see that knowledge of N and φ(N) provides an easy determination of the
factors p and q of N = pq. For φ(N) = (p− 1)(q− 1) = pq− p− q+ 1 = N − p− (N/p) + 1,
so that p is found as the solution of a quadratic equation in terms of N and φ(N).

Thus, this way of determining d from N and e is computationally as hard as the problem
of factorizing N . Since no one knows of any way to find d from N and e without using φ(N),
therefore, as far as we know, knowledge of p and q is required.

3.3 The order function and factorization

In this section we will show how to factor N efficiently on a classical computer if we can
compute the order function6 ord(x,N) — “the order of x (mod N)”. This will essentially
show that factorization and computation of the order function are equally hard problems,
computationally. We will see that the order function is a kind of refinement of the Euler
function φ(N), and is closely related to the discrete logarithm, the inverse of the discrete
exponential.

As far as we know, a classical computer needs about exp{logN} gates to compute
ord(x,N), i.e., the computation grows exponentially with the input, like the factorization
problem. In the next section we will show that there exists an algorithm (Shor’s algorithm)
whereby a quantum computer can compute the order function with only about (logN)2

gates, thus showing how the existence of a quantum computer could exponentially speed up
the solution to the factorization problem (and thereby render vulnerable classical public key
cryptosystems).

Let x be coprime to N . The order of x (mod N), k := ord(x,N), is the smallest k > 0
such that

xk = 1 (mod N).

6Also frequently called the multiplicative order function.

47

By Euler’s theorem we know that the order exists and does not exceed φ(N). We will often
shorten calling k “the order of x (mod N)” to just “the order of x” when N is understood
from context. Another common usage is to call it “the period of x relative to N” for reasons
we will now explore.

As an example, let’s find ord(2, 15). The powers of 2 modulo 15 are

n 1 2 3 4 5 6 7 8 9 10 11
2n 2 4 8 1 2 4 8 1 2 4 8

and so on. Notice that the function f(n) = 2n (mod 15) is periodic with period k = 4 since
f(n + k) = f(n). The order of 2 modulo 15 is this period k—i.e., ord(2, 15) = k = 4. Note
that φ(15) = 8, which, in this case, is twice ord(2, 15).

Exercise 3.2 Find ord(2, 13) and ord(4, 13).

Exercise 3.3 Show that for any x coprime to N , ord(x,N) is the period of the function
f(n) = xn (mod N).

The period of a function can be found by taking its Fourier transform. Classically,
computing the Fourier transform on a set with N elements takes on the order of N logN ∼
logNelogN steps—i.e., exponentially long in the number of input bits logN . Thus the
order function (discrete logarithm) and discrete exponentiation bear a similar relationship
as factoring and multiplication do: in both cases the first is a hard problem, but the inverse
is computationally easy.

By contrast, we will see in the next section that a quantum computer can compute a
Fourier transform with only of order (logN)2 gates, which makes it look hopeful that a
quantum computer might be able to compute the order function quickly. The problem with
this is that though the quantum computer can compute the Fourier transform quickly, it
cannot then access the N elements of the Fourier transform to determine the period! But,
by a clever indirect approach it is possible to find the period ord(x,N) with a number of
gates only polynomial in logN . We shall discuss this in detail in section 5.

For the rest of this section, we will simply assume that we have a method of computing
ord(x,N), which we call “an order function oracle”, and will show how it enables us to
quickly factor N . Here is the algorithm:

Input: Integer N to be factored.

Output: A nontrivial factor of N .

Steps: 1. Generate a random x in the range 1 < x < N .

2. Compute gcd(x,N) = h. If h > 1, then h is a nontrivial factor of N ; stop.

3. Get k = ord(x,N) from the order function oracle. If k is odd, return to step 1.

4. Compute t = xk/2 (mod N). If t = −1 (mod N) return to step 1.

5. Compute h = gcd(t+ 1, N). This will be a nontrivial factor of N ; stop.

48

It is not hard to see why this algorithm gives a nontrivial factor of N . For if k =
ord(x,N) is even, then t = xk/2 (mod N) is defined. But from the definition of order,
xk − 1 = 0 (mod N), so t2 − 1 = (t+ 1)(t− 1) = 0 (mod N). Hence

(t+ 1)(t− 1) = rN (174)

for some r. But then gcd(t + 1, N) 6= 1, since if it were then (174) would imply that t − 1
is divisible by N , or t = xk/2 = 1 (mod N), which would mean that ord(x,N) ≤ k/2 in
contradiction to the assumption that ord(x,N) = k. Since gcd(t + 1, N) 6= 1, it is a factor
of N . But it could still be trivial if gcd(t + 1, N) = N , or equivalently, if t = −1 (mod N).
This explains the restriction in step 4.

It may be helpful to see this algorithm in action in some examples. Let N = pq =
11 ·13 = 143. Choose a random number x in the range 1 < x < N with x coprime to N . Say
x = 4. We use the quantum computer to compute k = ord(x,N) = ord(4, 143) = 30. (Of
course, we don’t have a quantum computer; these numbers are very small, so the order is
easily computed on a classical computer.) Then we let t = xk/2 = 415 = 12 (mod N). Then
h = gcd(t+ 1, N) = gcd(13, 143) = 13 is indeed a nontrivial factor of N .

With the same N , if we chose instead x = 10, though, the algorithm doesn’t give us a
useful answer, since it fails the condition in step 4. For, k = ord(x,N) = ord(10, 143) = 6,
and t = xk/2 = 142 = −1 (mod N). Then gcd(t + 1, N) = gcd(143, 143) = gcd(N,N) = N ,
and we have only a trivial factor of N .

Given that just randomly guessing a factor of N is very improbable, the only way this
algorithm is successful is for it to reach step 5. For this to happen we need to be lucky in
two ways when we choose x:

(a) k = ord(x,N) must be even so that t = xk/2 (mod N) is defined, and

(b) t must not be N − 1 = −1 (mod N).

The 50% theorem states: In the special case when N = pq is the product of two primes,
the probability P (N) that a random number x in the range 1 ≤ x < N satisfies both
conditions (a) and (b) above is at least 50 %.

Given this result, and since the probability of the algorithm stopping in step 2 is negligible
if the prime factors of N are all large, the probability of reaching step 5 is at least 50% each
time we start from step 1. Hence the probability of failing after r times is at most 2−r.
So the average number of times through the loop before successfully factoring N is at most
1/(1/2) = 2.

The 50% theorem is proven in appendix 3.4.

3.4 Appendix: Modular arithmetic

This appendix reviews some elementary concepts from number theory and gives the proof
of the 50% theorem.

49

Greatest common divisors

The greatest common divisor of two non-negative integers a, b is denoted gcd(a, b) and is the
largest integer which divides them both. (We define gcd(0, a) ≡ a.) a and b are said to be
coprime, or equivalently, a is coprime to b (or vice versa) if gcd(a, b) = 1.

The gcd can be computed efficiently by Euclid’s algorithm. This algorithm uses successive
long divisions to find a sequence of decreasing remainders. The last positive remainder is
the gcd. First let’s outline the algorithm, then explain why it works. Suppose we want to
find gcd(a, b) where a > b. Then, long division of a by b gives a quotient q1 and remainder
r1 with 0 ≤ r1 < b. This can be expressed as a = bq1 + r1. Euclid’s algorithm then says to
divide b by r1 to find a new remainder r2 and so on:

a = bq1 + r1 (0 ≤ r1 < b) ⇒ gcd(a, b) = gcd(b, r1)

b = r1q2 + r2 (0 ≤ r2 < r1) ⇒ gcd(b, r1) = gcd(r1, r2)

r1 = r2q3 + r3 (0 ≤ r3 < r2) ⇒ gcd(r1, r2) = gcd(r2, r3)

...
...

...
... (175)

rn−2 = rn−1qn + rn (0 ≤ rn < rn−1) ⇒ gcd(rn−2, rn−1) = gcd(rn−1, rn)

rn−1 = rnqn+1 + 0 ⇒ gcd(rn−1, rn) = gcd(rn, 0) = rn.

From the inequalities on the right we see that the ri form a strictly decreasing sequence, so
after at most b steps (typically many fewer: we will find a bound on the number n of steps
below) the remainder 0 will appear. The last (smallest) positive remainder, rn, is the desired
gcd.

To see why this is true, note that if a = bq+r, then gcd(a, b) = gcd(b, r). This is because
any number which divides both a and b also divides r, since r = a−bq; and conversely, every
number which divides b and r also divides a. Therefore the set of all common divisors of a
and b is the same as those of b and r, and so their greatest common divisors must be the
same.

Now apply this to (175): gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = . . . = gcd(rn−1, rn) =
gcd(rn, 0) = rn, giving the desired answer.

It is not hard to see that Euclid’s algorithm is efficient. Suppose a and b are represented
by strings of at most L bits; that is, log b ≤ log a . L. Then none of the quotients qi or
remainders ri can be more than L bits long, so all computations can be done with L-bit
arithmetic. Furthermore, ri+2 ≤ ri/2.

Proof: Either ri+1 ≤ ri/2 or ri+1 > ri/2. In the first case, since the ri’s are strictly decreasing,

if follows that ri+2 ≤ ri/2. In the second case, since ri = ri+1qi+2+ri+2, we must have qi+2 = 1,

implying that ri+2 = ri − ri+1 < ri/2.

Thus the number n of steps in Euclid’s algorithm is bounded above by n < 2 log b ∼ O(L).
Euclid’s algorithm can be refined slightly to give an algorithm for computing integers

(positive or negative) A and B such that Aa + Bb = gcd(a, b). To show this, consider the
sequence of remainders in (175). The first can be written r1 = a − q1b = A1a + B1b (i.e.,
with A1 = 1 and B1 = −q). From the next equation in (175) we then have r2 = b− q2r1 =
b− q2(A1a + B1b) = A2a + B2b. This process can be repeated for the successive remanders
until we arrive at rn = Aa+Bb.

50

Euler totient function

A function which will play an important role in what follows is the Euler totient function
φ(N). φ(N) is defined to be the number of numbers less than N and coprime to N . Thus,
if p is prime, φ(p) = p − 1, and if N = pq with p and q prime and not equal, then φ(N) =
(p− 1)(q − 1).

Note that if you know φ(N), then you know the N = pq factorization (assuming it just
has two factors). This is because N = pq implies p = N/q, and φ(N) = (p − 1)(q − 1) =(
N
q
− 1
)

(q − 1) = N + 1− q − N
q

which is a quadratic equation for q given N and φ(N).

Modular arithmetic

We say that a = b (mod m) if m divides a− b (with remainder 0). Equations mod m can be
added, subtracted and multiplied. By b (mod m) we mean the unique number B = b (mod m)
such that 0 ≤ B < m.

You have to be a little more careful with modular division. It is only well-defined if the
number you are dividing by has a modular inverse. The inverse (mod b) of a is defined to
be the integer A (0 < A < b) such that Aa = 1 (mod b). For example, if a is divisible by
b—i.e., a = 0 (mod b)—then a does not have a modular inverse and you cannot divide by it
in modular arithmetic, just as you cannot divide by 0 in integer arithmetic. More generally,
the inverse (mod b) of a exists if and only if a and b are coprime.

Proof: If the inverse exists, then Aa = 1 (mod b) which means that there exists a B such that

Aa + Bb = 1. As in the proof of Euclid’s algorithm, this implies that gcd(a, b) = 1, i.e., that

a and b are coprime. The converse follows from Euclid’s algorithm, which, as described above,

shows the existence of and computes integers A and B such that Aa+Bb = gcd(a, b). If a and

b are coprime, so that gcd(a, b) = 1, then we have Aa = 1 (mod b), and so we have an efficient

algorithm for computing the inverse (mod b) of a as well as a proof of its existence.

The central mathematical object in the RSA cryptosystem is the operation of exponen-
tiation in modular arithmetic,

xk (mod m),

which is also called the discrete exponential. Its value lies in the range [0,m), and it is
possible to compute it without at any time dealing with numbers larger than m2. We could,
for example, compute xk (mod m) recursively as follows:

x1 (mod m) = x (mod m)

for even k > 1, xk (mod m) =
[
xk/2 (mod m)

]2
(mod m)

for odd k > 1, xk (mod m) = x
[
xk−1 (mod m)

]
(mod m).

It is easy to see that the number of steps in the recursion is O(log k).
A key to understanding the properties of the discrete exponential is Euler’s theorem

which states that if a is coprime to n, then

aφ(n) = 1 (mod n).

51

Proof: By definition the number of integers less than and coprime to n is φ(n). Let k1, k2, . . . ,
kφ(n) be those numbers. Then the φ(n) numbers aki (mod n) must be the same numbers since
they are distinct (why?) and coprime to n (why?). Hence

φ(n)∏
i=1

(aki) =

φ(n)∏
i=1

ki (mod n). (176)

But since the ki are each coprime to n, so is
∏
i ki. Therefore

∏
i ki has a modular inverse, so

we can divide (176) by it to find aφ(n) = 1 (mod n).

A familiar corollary of Euler’s theorem is Fermat’s (little) theorem: Let p be a prime and
suppose a is coprime to p. Then ap−1 = 1 (mod p).

The 50% theorem

We now prove the 50% theorem. The proof is somewhat lengthy since it needs some further
results from number theory, but since the techniques used in the proof are basically elemen-
tary, we include it here for completeness. The results we need are the Chinese remainder
theorem, the notion of primitive roots modulo p, and the primitive root existence theorem.
We will briefly explain what these are, and then proceed to the proof of the 50% theorem.
The proofs of the Chinese remainder and primitive root existence theorems are included
afterwards.

The Chinese remainder theorem states that given coprime m and n, and given a and b,
there exists a unique x in the range 0 ≤ x < mn such that x = a (mod m) and x = b (mod n).
Clearly, given any x, there are a and b such that these two equations are true; hence the
converse of the Chinese remainder theorem is also true. This shows, in particular that there
is a one-to-one mapping of x’s satisfying the two equations to pairs (a, b) mod (m,n). This
gives rise to a probabilistic way of stating the Chinese remainder theorem: If m and n are
coprime, and if a and b are chosen uniformly randomly mod m and mod n respectively, then
the unique x such that x = a (mod m) and x = b (mod n) is distributed uniformly randomly
in the set {0, 1, . . . ,mn− 1}.

The primitive roots mod p are those numbers a such that ord(a, p) = p− 1. This implies
that if a is a primitive root mod p, then the numbers {1, a, a2 (mod p), . . . , ap−2 (mod p)} are
distinct; hence they must be a permutation of the numbers {1, 2, . . . , p− 1}. For example:
the number g = 2 is a primitive root mod p when p = 13, as may be seen from the table

n 1 2 3 4 5 6 7 8 9 10 11
2n 2 4 8 3 6 12 11 9 5 10 7

and 212 is of course 1 mod 13 by Fermat’s little theorem. On the other hand, 4 is not a
primitive root, as may be seen from the table

n 1 2 3 4 5 6 7 8 9 10 11
4n 4 3 12 9 10 1 4 3 12 9 10

The primitive root existence theorem states simply that for every odd prime p, there is a
primitive root g mod p.

Given these results, we now turn to

52

The 50% theorem: Suppose N = pq where p and q are odd primes and S = {y|1 ≤ y <
N, gcd(y,N) = 1}. Then at least 50% of the integers y in S have even order k = ord(y,N)
and satisfy yk/2 6= −1 (mod N).

Proof: Suppose y is in S and has order ord(y,N) = r = 2ah, where h is odd. Suppose
ord(y, p) = s = 2iu and ord(y, q) = t = 2jv, where u and v are odd. Since N = pq, it is easy
to see that both s and t divide r.

Suppose that r is odd. Since both s and t divide r, they must both be odd. Hence i =
j = a = 0. Suppose instead that r is even and yr/2 = −1 (mod N). Then yr/2 = −1 (mod p),
so that r/2 is not a multiple of s = ord(y, p). Since s divides r we must have i = a. Similarly
j = a. To summarize: if r = ord(y,N) is odd or if r is even and yr/2 = −1 (mod N), then
i = j = a.

Let p− 1 = 2mx where x is odd. From the primitive root existence theorem we know that
the nonzero integers mod p are generated by the p − 1 powers of some generator g coprime
to p. It follows that an integer b will have an odd order with respect to p if and only if b
equals g to a power 2mw, 1 ≤ w ≤ x, and the proportion of such integers is therefore 2−m.
Furthermore, precisely those b’s equal to g to a power 2m−kw, w odd, will have a period with
exactly k powers of 2. It follows that w can take odd values from 1 through 2kx− 1, and there
are precisely 2k−1x such integers. That is, the proportion of integers in S whose order with
respect to p has exactly k powers of 2 is 2k−m−1.

Now suppose that p−1 = 2mx and q−1 = 2nw where x and w are odd and 1 ≤ m ≤ n. By
the probabilistic interpretation of the Chinese remainder theorem, we see that the proportion of
integers y in S which have odd period or which have an even period u and yu/2 = −1 (mod N)
is (

1

2

)m+n

+
∑

1≤k≤m

(
1

2

)m+n−2k−2

=
4m + 2

2m+n · 3
:= f(m,n).

The function f(m,n) is greatest when n is as small as possible. Since 1 ≤ m ≤ n, we have

f(m,n) ≤ f(m,m) = (1 + 2 · 4−m)/3 ≤ f(1, 1) = 1/2.

Proof of the Chinese remainder theorem

The proof of the Chinese remainder theorem is simply a computation in modular arithmetic.
Since we want x = a (mod m), we desire an integer t such that x = a + tm. Since we
want x = b (mod n), we must want x = a + tm = b (mod n). Solving this for x, we
obtain tm = b − a (mod n), or t = m′(b − a) (mod n), where m′ is the mod n inverse
of m. The inverse m′ exists because m and n are coprime. Now substituting we obtain
x = a+ tm = a+m′m(b− a) (mod n). To get x in the required range 0 ≤ x < mn, we may
have to reduce x modulo mn, so x = a+m′m(b− a) (mod mn). Reversing the above steps,
we can see that x = a (mod m) and x = b (mod n).

For example, find x such that x = 2 (mod 5) and x = 4 (mod 7). Let x = 2 + 5t. Then
2 + 5t = 4 (mod 7), so 5t = 2 (mod 7). But 5−1 = 3 (mod 7), so t = 6 (mod 7). Thus
x = 2 + 5t = 32. Let’s check our solution: 32 = 2 (mod 5) and 32 = 4 (mod 7).

Proof of the primitive root existence theorem

We shall need a number of lemmas and theorems before we can prove this. In particular we
will need Lagrange’s theorem on the number of solutions to integral polynomial equations
mod p, and the property of Euler’s function that

∑
d|m φ(d) = m.

Lemma: If p is an odd prime, and x is coprime to p, then ord(x, p) divides p− 1.

53

Proof: Let s = ord(x, p), and divide p− 1 by s to obtain p− 1 = qs+ r with 0 ≤ r < s. Then

xr = xp−1(xs)−q = 1 (mod p) by Fermat’s little theorem and the definition of s. If r > 0 this

then implies that r < s is the order of x, contradicting the fact that s is. Therefore r = 0,

hence s divides p− 1.

Lemma: If p is prime and ab = 0 (mod p), then either a = 0 (mod p) or b = 0 (mod p).

Proof: The lemma just says that if p divides ab, then either p divides a or p divides b.

Lagrange’s theorem: If P (x) is a polynomial of degree d with integer coefficients, then
the number of solutions to P (x) = 0 (mod p) (that are different mod p) does not exceed d
if p is prime.

Proof: By induction on d. The result is true for d = 1. Let d > 1, so P (x) is a polynomial

of degree d, and let P (a) = 0 (mod p). Then the linear term x − a will divide P (x) exactly.

That is, P (x) = (x− a)Q(x) (mod p) where Q(x) is a polynomial of degree d− 1, and by the

induction hypothesis, Q(x) has at most d − 1 roots. By the above lemma, P (x) can only be

zero if either x− a or Q(x) is zero. Hence P (x) = 0 (mod p) has at most d solutions.

Note that the theorem is false if p is not prime. For example x2 − 1 = 0 (mod 15) has the
four roots 1, 4, 11, and 14.

Lemma: If A and B are positive and coprime, then the AB numbers m = Ab+Ba with
0 ≤ a < A and 0 ≤ b < B are distinct modulo AB. Furthermore, if the a’s are confined to
the φ(A) numbers coprime to A and the b’s are confined to the φ(B) numbers coprime to B,
then the resulting φ(A)φ(B) numbers are all coprime to AB.

Proof: Suppose that Ab1 + Ba1 = Ab2 + Ba2 (mod AB). Then modulo B we have Ab1 =

Ab2 (mod B), and modulo A we have Ba1 = Ba2 (mod A). But A and B are coprime, so

b1 = b2 (mod B) and a1 = a2 (mod A), so b1 = b2 and a1 = a2. Hence the numbers Ab + Ba

are distinct (mod AB). Furthermore, let µ = Aβ + Bα, so µ = Aβ (mod B). If β is coprime

to B, then so is Aβ (since A and B are coprime), and hence gcd(µ,B) = gcd(Aβ + Bα,B) =

gcd(Aβ,B) = 1. Likewise, if α is coprime to A, then so is µ. Therefore, if α is coprime to A

and β is coprime to B, we must have that µ is coprime to AB. The lemma follows.

Multiplicative property of φ: If gcd(A,B) = 1, then φ(AB) = φ(A)φ(B).

Proof: The φ(A)φ(B) numbers µ in the above lemma are coprime to AB and distinct modulo

AB. Further, each such µ is equal (mod AB) to exactly one integer x in the range 0 < x < AB.

No other of the AB numbers m = Ab + Ba are coprime to AB, for if gcd(a,A) > 1, then m

is not coprime to A and therefore not coprime to AB. Similarly, if gcd(b, B) > 1, m is not

coprime to AB. The result follows.

Theorem: Let m be written as its prime factorization m =
∏

p p
c. Then

φ(m) =
∏
p

φ(pc) =
∏
p

(p− 1)pc−1.

Proof: If m = pc where p is a prime, then the numbers x, 0 < x < m, that are not prime

to m are precisely the multiples of p less than m. There are pc−1 of these. Hence φ(pc) =

pc − pc−1 = (p − 1)pc−1. The theorem then follows from this and the multiplicative property

of φ.

54

Theorem:
∑

d|m φ(d) = m. (d|m means d divides m.)

Proof: If m =
∏
pc, then the divisors of m are the numbers d =

∏
pc

′
, where 0 ≤ c′ ≤ c for

each p, and ∑
d|m

φ(d) =
∑
p,c′

∏
φ(pc

′
) =

∏
p

{
1 + φ(p) + φ(p2) + · · ·+ φ(pc)

}
,

by the multiplicative property of φ(m). But 1 + +φ(p) + φ(p2) + · · · + φ(pc) = 1 + (p − 1) +

p(p− 1) + · · ·+ pc−1(p− 1) = pc, so
∑
d|m φ(d) =

∏
p p

c = m.

Theorem: If p is an odd prime, then there are φ(p− 1) primitive elements modulo p.

Proof: Each x, 1 ≤ x ≤ p− 1, has an order d relative to p which by a previous lemma divides
p−1. Therefore, if ψ(d) is the number of numbers mod p of order d, then

∑
d|p−1 ψ(d) = p−1,

since all x will be counted. But we also have
∑
d|p−1 φ(d) = p−1 that we proved above. Hence∑

d|p−1

ψ(d) =
∑
d|p−1

φ(d) = p− 1.

Now, ψ(p − 1) counts the number of primitive elements, so we want to show that ψ(p − 1) =
φ(p − 1). If we could show that ψ(d) ≤ φ(d) for all d, then it would follow that ψ(d) = φ(d)
for all d, and the theorem would follow.

Suppose ψ(d) > 0, then there exists an f such that ord(f, p) = d. Let fh = fh for
0 ≤ h < d. Each fh is a root of the equation

xd = 1 (mod p), (177)

since fhd = 1h. The fh are distinct (mod p), since otherwise fh = fh
′

with h′ < h < d

would imply fh−h
′

= 1 with 0 < h − h′ < d, and thus ord(f, p) < d, a contradiction. Hence

by Lagrange’s theorem, the fh’s are all of the roots of equation (177), which means that

all the elements of order d are to found among the fh’s. Finally, if ord(fh, p) = d, then

gcd(h, d) = 1, since a k > 1 dividing both h and d would imply (fh)d/k = (fd)h/k = 1 and

ord(fh, p) ≤ d/k < d. Thus an h such that fh is of order d must be one of the φ(d) numbers

less than and coprime to d. Therefore ψ(d) ≤ φ(d) and the theorem follows.

Corollary: If p is an odd prime, then there exists a primitive element g.

4 Quantum Fourier transform

We have seen that the order function basically computes the period of the modular expo-
nential. A basic way to compute the period of a periodic function is to take its Fourier
transform. So it should be no surprise that an algorithm for computing the order function
will involve computing the Fourier transform. We present here a quantum circuit which
implements a version of the Fourier transform on n qubits. Since finding periods has many
other applications beyond factorization, the quantum Fourier transform circuit is interesting
in its own right.

The usual Fourier transform has the property that it maps periodic functions — eg,
f(x) ∼ cos(y0x) or similar — which are non-zero for most values of the variable x, to

55

functions — eg, δ(y − y0) — which are concentrated at just a few values of the Fourier
transform variable y.

x

f(x)

Fourier transf. y

g(y)

y0

The analog of this behavior for the quantum Fourier transform is that a state which is
in an equal superposition with appropriately varying phases of all the computational basis
states is transformed to a state which is a single one of the computational basis vectors, and
vice versa. We will see how this is useful in our later discussion of the Shor factorization
algorithm.

The (classical) Fourier transform is given by

g(y) =
1√
2π

∫ ∞
−∞

dxf(x)eixy, f(x) =
1√
2π

∫ ∞
−∞

dyg(y)e−ixy. (178)

By plugging one of these expressions into the other, it follows that they are inverses of each
other upon using the identity∫ ∞

−∞
dxf(x)ei(y−y

′)x = 2πδ(y − y′), (179)

or a similar expression with y and x exchanged everywhere. δ(y − y′) is the Dirac delta
function, a kind of continuous version of the Kronecker delta symbol, ie, “δ(y − y′) ∼ δy,y′”.

To motivate the definition of the quantum Fourier transform gate, we discretize the
classical Fourier transform in (178), so it applies to an n-bit register instead of a continuous
function. An n-bit register can take on 2n different values, which we’ll label by indices
j, k ∈ {0, 1, . . . , 2n−1}. Then the discretization consists of the replacements

1√
2π

∫
dx→ 1

2n/2

2n−1∑
j=0

, f(x)→ fj, x→
√

2π

2n/2
k, (180)

and similar substitutions for y and g to give the discrete Fourier transform

gk =
1

2n/2

2n−1∑
j=0

fje
2iπjk/2n , fj =

1

2n/2

2n−1∑
k=0

gke
−2iπjk/2n . (181)

The discrete analog of (179) which makes the two equations in (181) consistent is the identity

1

2n

2n−1∑
j=0

e2iπj(k−k
′)/2n = δk,k′ . (182)

56

We can prove this identity by using the fact that if qN = 1, then

1

N

N−1∑
j=0

qj =

{
1 if q = 1,

0 otherwise.
(183)

Exercise 4.1 Prove (183) by using the elementary identity
∑N−1

j=0 q
j = (qN − 1)/(q − 1) if

q 6= 1.

Then (182) follows by identifying q ≡ e2iπ(k−k
′)/2n , N ≡ 2n, and noting that q = 1 if and

only if k = k′.
This motivates the definition of the quantum Fourier transform gate as a gate, QFT ,

which acts on the computational basis of an n-qubit Hilbert space as

QFT |j〉 :=
1

2n/2

2n−1∑
k=0

e2iπ(kj/2
n)|k〉, j ∈ {0, 1, · · · , 2n−1}. (184)

This is just the right hand equation in (181) with the replacements

fj → QFT |j〉, gk → |k〉. (185)

As usual, the basis states |j〉 with j ∈ {0, 1, . . . , 2n−1} is just a shorthand for the n-qubit
basis states |a1a2 · · · an〉 where j = a1a2 . . . an in base 2. Explicitly,

j := a1a2 . . . an = 2n−1a1 + 2n−2a2 + · · ·+ 22an−2 + 2an−1 + an,

k := b1b2 . . . bn = 2n−1b1 + 2n−2b2 + · · ·+ 22bn−2 + 2bn−1 + bn. (186)

We now construct a circuit using only 1- and 2-qubit gates which implements QFT on n
qubits. We will see that the total number of gates we need is less than n(n+ 2)/2.

To construct a circuit we need to restate the definition (184) of the Fourier transform
gate in terms the qubit computational basis |a1a2 · · · an〉. This is straightforward except for
the factor of jk/2n appearing in the exponent. Since e2iπ` = 1 for ` an integer, we only need
to evaluate jk/2n mod 1 — ie, we only need to keep its fractional part. Note that, using
(186),

k

2n
=

1

2
b1 +

1

22
b2 + · · ·+ 1

2n−1
bn−1 +

1

2n
bn ≡ 0.b1b2 . . . bn, (187)

57

where in the last step we notated the sum as a binary decimal. Then

j
k

2n
=
(
2n−1a1 + · · ·+ 22an−2 + 2an−1 + an

)(1

2
b1 +

1

22
b2 +

1

24
b3 + · · ·+ 1

2n
bn

)
=

1

2
anb1

+

(
1

2
an−1 +

1

22
an

)
b2

+

(
1

2
an−2 +

1

22
an−1 +

1

23
an

)
b3

+ · · ·

+

(
1

2
a1 +

1

22
a2 + · · ·+ 1

2n
an

)
bn

= (0.an)b1 + (0.an−1nn)b2 + · · ·+ (0.a1 . . . an)bn, (188)

where we dropped the integer terms in the product. So

QFT |a1 . . . an〉 =

=
1

2n/2

∑
bi∈Fn2

e2iπ[(.an)b1+(.an−1an)b2+···+(.a1...an)bn]|b1 · · · bn〉 (189)

=
1

2n/2

(∑
b1

e2iπ(.an)b1|b1〉
)
⊗
(∑

b2

e2iπ(.an−1an)b2|b2〉
)
⊗ · · · ⊗

(∑
bn

e2iπ(.a1...an)bn|bn〉
)

= 1√
2

(
|0〉+e2iπ(.an)|1〉

)
⊗ 1√

2

(
|0〉+e2iπ(.an1an)|1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+e2iπ(.a1...an)|1〉

)
.

From this we see that the first output qubit is in a superposition with a phase controlled by
the last (an) input qubit, and second output qubit is controlled by the last two (an−1 and
an) inputs, and so on. This indicates that we will need to reverse the order of the input
qubits at some point.

Let us focus for the moment on just the first and last qubits, and consider the simple
circuit

|a1〉 H
|ψ〉

|an〉
(190)

where the first gate is the swap gate defined in (81) which acts on the computational basis
by SWAP |a1an〉 = |ana1〉. Then the output of this circuit is

|ψ〉 = 1√
2

(
|0〉+ (−)an|1〉

)
⊗ |a1〉

= 1√
2

(
|0〉+ e2iπan/2|1〉

)
⊗ |a1〉

= 1√
2

(
|0〉+ e2iπ(.an)|1〉

)
⊗ |a1〉, (191)

58

where in the last two lines I have simply rewritten the sign coming from the Hadamard
gate in terms of an exponential of the binary decimal 0.an. So this circuit reproduces the
first output qubit correctly. To get the second output qubit as well, we will have to swap
a2 ↔ an−1, then act with a Hadamard gate on the second wire to get the superposition.
But the resulting phase is not quite right; this can be corrected by adding in a phase gate
controlled by the an qubit (which, recall, has been swapped to the first wire). The controlled
phase gates we will need are

|a〉 |a〉

|b〉 Rj e2iπ(ab/2
j)|b〉

. (192)

In particular, if |b〉 = |0〉 then the second output qubit is |0〉, but if |b〉 = |1〉 the second
output qubit gets a phase e2iπ(a/2

j)|1〉. It is then easy to see that the following circuit gives

|a1〉 H 1√
2

(
|0〉+e2iπ(.an)|1〉

)
|a2〉 H R2

1√
2

(
|0〉+e2iπ(.an−1an)|1〉

)
|an−1〉 |a2〉

|an〉 |a1〉

(193)

Exercise 4.2 Verify the output of this circuit is as shown.

Now we just repeat this construction for all the other qubits, to get

QFT =

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

· · · · · · · · · · · ·

H

H R2

H R2 Rn−1 Rn

H R2 R3 Rn−1 Rn

(194)

︸ ︷︷ ︸
≤n/2

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
2

︸︷︷︸
1

Underneath the circuit we have counted the number of gates used. The total is bounded
above by (n/2) +

∑n
j=1 j = n(n+ 2)/2, so

number of gates used in n-qubit QFT ≤ n(n+ 2)

2
. (195)

This gives us some measure of the computational complexity for implementing the quantum
Fourier transform, and will be useful in our discussion of the Shor algorithm later in the
course.

59

5 Shor’s quantum algorithm for the order function

We have now reduced the problem of breaking public key encryptions to that of factoring
large numbers in “polynomial time” (i.e., in a number of steps polynomial in the number of
input bits). And we have reduced the problem of factoring large numbers to that of com-
puting the order function in polynomial time. We will now show how a quantum computer
can achieve this by presenting an algorithm due to Peter Shor.

5.1 Shor’s algorithm

We will describe Shor’s algorithm for a quantum computer operating on a 2n-qubit state
space, where n will be chosen below. This machine therefore has a Hilbert space of dimension
22n = 2n · 2n. We will think of this Hilbert space as the tensor product of two Hilbert spaces
each of dimension q = 2n. Choose an arbitrary orthonormal basis of each of these spaces
which we label by integers a (mod q)—i.e., the basis is {|a〉} with a = 0, 1, . . . , q − 1. Thus
the general basis state of the quantum computer is |a〉|b〉, and a general state of the computer
is |ψ〉 =

∑q−1
a,b=0Cab|a〉|b〉 for some coefficients Cab. Assume the machine is initially prepared

in the state |ψ0〉 = |0〉|0〉.

Shor’s algorithm

Inputs: x, N with gcd(x,N) = 1. Also, a small positive integer T .

Output: r = ord(x,N), i.e., the least positive r such that xr = 1 (mod N).

Steps: 1. Choose a q = 2n so that N2 < q ≤ 2N2.

2. Put the machine in the uniform superposition of states with all values of a (mod q)
in the first factor (leaving the second factor alone):

|ψ2〉 =
1
√
q

q−1∑
a=0

|a〉|0〉.

3. Next compute xa (mod N) in the second factor:

|ψ3〉 =
1
√
q

q−1∑
a=0

|a〉|xa (mod N)〉. (196)

4. Now perform a Fourier transform, mapping the first factor |a〉 → |c〉 with amplitude
q−1/2 exp{2πiac/q}, that is, mapping |a〉 →

∑
c(1/
√
q)e2πiac/q|c〉:

|ψ4〉 =
1

q

q−1∑
a=0

q−1∑
c=0

e2πiac/q|c〉|xa (mod N)〉. (197)

60

5. Measure the state with respect to the |a′〉|b′〉 basis. This returns a value for both c
and xa (mod N) from the state |ψ4〉.

6. Round the fraction c/q to the nearest fraction, d/r, (in lowest terms, i.e., gcd(d, r) =
1) having a denominator r < N and satisfying∣∣∣∣cq − d

r

∣∣∣∣ ≤ 1

2r2
. (198)

7. Compute h = xr (mod N). If h 6= 1 return to step 2; otherwise continue.

8. Store the value of r. If there are T values of r stored then continue to step 9;
otherwise return to step 2.

9. Choose the least of the stored values of r. It is then ord(x,N) with probability
P > 1− (.6)T .

Note that steps 1, 6, 7, 8, and 9 are classical, while steps 2, 3, 4, and 5 are the quantum
ones. Some comments on the steps:

1. Since x < N , the size of the input (i.e., the total number of bits in x and N) is at
most ∼ 2 logN . In step 1, note that since q ∼ N2, the number of bits of q is also
n = log q ∼ 2 logN . In particular, the number of qubits 2n scales linearly with logN .

The small integer T will control the total number of times to repeat the algorithm.
The larger T , the more confidence the returned result is correct. (In practice T = 1 or
2 is probably ample, as we will discuss later.)

2. Step 2 is the preparation step for the quantum computer. We have seen in earlier lectures
how this can be done with a number of quantum gates polynomial in n (or logN) (e.g.
by applying n Hadamard gates to the first register prepared in the state |0〉|0〉).

3. The computation of xa (modN) can be done classically with a number of gates polynomial
in logN , so it can also be done quantumly in the same way. (Since we are keeping x
and N fixed, this can in fact be done reversibly, as can the next step.)

4. A quantum circuit using a polynomial number of gates to perform the Fourier transform
was described in previous lectures. It can be done using at most n(n+ 4)/2 gates.

5. In the measurement step, it is actually sufficient to measure just the value of c, but for
clarity we will assume that we also measure xa (mod N).

6. Step 6 is a classical computation that can be done in polynomial time using a continued
fraction algorithm which we will describe below.

7. Step 7 is a classical computation that can be done in polynomial time and was described
earlier. It simply checks whether r is possibly ord(x,N), and discards it and starts
over if it is not.

61

8. If r passes the test in step 7, then xr = 1 (mod N). But this does not mean that
r = ord(x,N), since the order of x is the smallest r satisfying xr = 1 (mod N). In
particular, if r = ord(x,N), then any multiple r′ = mr also satisfies xr

′
= 1 (mod N).

So step 8 just says to repeat the algorithm until T such possible r’s have been found.

9. The probability bound in step 9 is very crude. As we will discuss below, in practice we
can expect virtual certainty with just T = 1 or 2.

Note that steps 7, 8, and 9 essentially just enforce that r will be ord(x,N) (with some
probability which increases for increasing T), so it is clear that this algorithm will eventually
yield ord(x,N). The question is therefore all in how fast (how many steps on average) it
takes for it to terminate. It is easy to see that if the value of r returned after step 6 is
completely random, then it has only a 1/N chance of being ord(x,N), and so the algorithm
would have to run on the order of N = elogN loops to find the answer, and so would be no
advantage over a classical computation.

So the key lies in understanding why the value of r returned after the quantum compu-
tation and step 6 has a much higher probability than random chance of being ord(x,N). We
will show how to compute this probability in appendix 5.4 below, and thus assess the time
it takes this algorithm to run.

But before we undertake this analysis, it may be helpful to run the algorithm on an
example (x,N) to get some intuition for how and why it works. In order to do that, though,
we first have to make the classical continued fraction algorithm used in step 6 explicit.

5.2 Example: quantum computation of ord(10, 21).

Now we are ready to try Shor’s algorithm on an example. Say we were trying to use a
quantum computer to factor the number 21. Then, following the factorization algorithm
(section 3.3), we would want it to compute ord(x, 21) for some random x coprime to 21. To
be definite, let’s choose x = 10.

Step 1 of Shor’s algorithm says to choose q = 512 = 29 since that is the power of 2
between N2 = 212 = 441 and 2N2 = 882.

Steps 2 and 3 put the machine in the state (196) where xa (mod N) = 10a (mod 21) are
computed by the machine to be

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
10a 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 · · ·

Clearly ord(10, 21) = 6. But we can’t extract this information directly from the state (196)
because by trying to measure the values of xa (mod N) in the second factor, we disturb the
state (project it onto the measured value).

So we proceed indirectly, performing the Fourier transform in step 4, giving the state
(197). The next step is simply to observe this state by projection to the |a′〉|b′〉 basis,
thus measuring the pair of integers c and xa (mod N). So let’s compute the probability of
measuring any given pair of values. From the table above, we see that the only values of
xa (mod N) that will be observed are {1, 4, 10, 13, 16, 19}, while any possible value of c from
0 to q − 1 = 511 seems possible. So if we measured 1 in the second register, then all terms

62

in sum over a in (197) with xa (mod N) = 1 will contribute. But, from the table above,
these are all a’s which are multiples of 6, a = 6m. And similarly, the amplitude to observe
10 sums over a = 6m + 1, to observe 16 has a = 6m + 2, to observe 13 has a = 6m + 3, to
observe 4 has a = 6m+4, and to observe 19 has a = 6m+5. Thus the resulting probabilities
of observing c in the first register and 1 in the second, and so forth, are

P (c, 1) =

∣∣∣∣∣ 1

512

85∑
m=0

e2πi(6m)c/512

∣∣∣∣∣
2

, P (c, 4) =

∣∣∣∣∣ 1

512

84∑
m=0

e2πi(6m+4)c/512

∣∣∣∣∣
2

,

P (c, 10) =

∣∣∣∣∣ 1

512

85∑
m=0

e2πi(6m+1)c/512

∣∣∣∣∣
2

, P (c, 13) =

∣∣∣∣∣ 1

512

84∑
m=0

e2πi(6m+3)c/512

∣∣∣∣∣
2

,

P (c, 16) =

∣∣∣∣∣ 1

512

84∑
m=0

e2πi(6m+2)c/512

∣∣∣∣∣
2

, P (c, 19) =

∣∣∣∣∣ 1

512

84∑
m=0

e2πi(6m+5)c/512

∣∣∣∣∣
2

.

In each case the m-independent term in the exponent can be dropped since it factors out of
the sum and has magnitude 1. Thus we find that, independent of what is measured in the
second register, the probability of measuring c in the first register (given that we have also
measured the second register) is

P (c) = 6

∣∣∣∣∣ 1

512

84 or 85∑
m=0

eiπ3mc/128

∣∣∣∣∣
2

.

Actually there are two functions, differing slightly by whether the sum goes to m = 84 or
m = 85. A plot of either function looks like figure 1. It is basically zero except for four

100 200 300 400 500

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

Figure 1: P (c) plotted for values c = 1, 2, . . . , 512.

sharp spikes at c = 85, 171, 341, and 427, and two isolated high points at c = 256 and 512
(or 0). This is what we expected: we are basically taking the Fourier transform of a periodic
function with period 6, so we should find 6 equally-spaced peaks. But since 512 isn’t exactly
divisible by 6, the peaks can’t be perfectly sharp: they actually have some width. In fact,
because of this discrete mismatch, the probability never quite vanishes for any of the values
of c. This can be more easily seen by plotting the logarithm of P (c), as in figure 2. Here we
can see the slight differences between the probability distributions for the sum to m = 84
versus the sum to m = 85 cases.

63

100 200 300 400 500

-16

-14

-12

-10

-8

-6

-4

-2
100 200 300 400 500

-16

-14

-12

-10

-8

-6

-4

-2

Figure 2: Log[P (c)] for the 84- and 85-term expressions.

The important thing to notice, though, is clear from figure 1: the probability is exponen-
tially dominated by just a handful of values. In particular, for this example, c = 0 or 256
each have probability 17%; c = 85, 171, 341, or 427 each have probability 11.5%; c = 86,
170, 342, or 426 each have probability 2.8%; c = 84, 172, 342, or 428 each have probability
0.7%; and all other values of c combined have a total probability of 6.0%. In fact, we will see
below that Shor’s algorithm can fail (i.e., give a wrong answer for the order—recall that the
algorithm can fail only by returning a number that is a multiple of the correct ord(x,N))
only for a relatively small set of c’s which are away from these probable values. This gives
Shor’s algorithm a very high probability (more than 99.8% in this example, as we will com-
pute below) of success just taking T = 1 in step 8.7 But before getting to step 8 of the
algorithm, the answer has to pass step 7, which checks if the returned value of r from step
6 satisfies xr = 1 (mod N). It may be that some of the “good” c’s fail this step.

To see whether and why that happens, let’s now sample some values of c, and run the
rest of the algorithm.

The most likely values are c = 0 or c = 256. These then give c/q = 0 or 1/2. Their
closest rational approximations with denominators less than N = 21 are just themselves,
thus giving r = 1 or 2. Neither of these is the right answer, and indeed step 7 throws them
out.

The next most likely are c ∈ {85, 171, 341, 427}. Say we measure c = 427. Step 6 says
to find the nearest fraction d/r to c/q = 427/512 having denominator r < N = 21. So we
run the continued fraction algorithm on c/q finding 427/512 = [0; 1, 5, 42, 2]. Thus the list
of convergents is {[0; 1] = 1, [0; 1, 5] = 5/6, [0; 1, 5, 42] = 211/253, [0; 1, 5, 42, 2] = 427/512}.
Only the first two have denominators less than N = 21. Both obey the inequality (198):

1/2 = 1/(2 · 12) = 1/(2r2) ≥ |(d/r)− (c/q)| = |(1/1)− (427/512)| = 85/512,

1/72 = 1/(2 · 62) = 1/(2r2) ≥ |(d/r)− (c/q)| = |(5/6)− (427/512)| = 1/1536,

but the second is the closer approximation, so step 6 returns d/r = 5/6, or r = 6. This
passes the check at step 7, and, indeed, is the right answer. The same would happen if
c = 85.

7 This is much higher than the lower bound on the rate of success claimed earlier in step 9 of Shor’s
algorithm. This discrepancy is because we will be making only very weak lower bounds on the probabilities
in section 5.4. More work can sharpen these bounds considerably, showing that for practical purposes we
need only ever take T = 1 or 2.

64

But if c = 171 or 341, one finds e.g., 171/512 = [0; 2, 1, 170] giving the convergents
[0; 2] = 1/2 which fails (198) and [0; 2, 1] = 1/3 which passes (198). Thus step 6 returns
r = 3. This is again the wrong answer, and is thrown out by step 7.

We can continue to less likely values of c. The result, as should be becoming clear, is
that nearby values to c = 85 or 427 return the correct answer, whereas values around the
other four peaks return the wrong values r = 2 or 3, which are rejected in step 7. How many
values around 85 or 427 work? To work, they have to be near enough so that d/r = 1/6 or
5/6 are their best rational approximations satisfying (198). Multiply this relation through
by q = 512 with d/r = 1/6 to get |c− 85.3| = q/(2r2) = 512/(2 · 62) = 7.1, and similarly for
d/r = 5/6. This tells us that only the c’s in the ranges 79–92 and 420–433, inclusive, return
the correct answer. Summing up the probability of observing these values of c gives 32.7%.

All other values of c give the wrong r at step 6. Of these all are eliminated in step 7
except for those which are multiples of the right r, r = 6. Since the algorithm only returns
values of r < N , the only multiples which could occur are r = 12 and r = 18. Which values
of c could give these wrong answers? Ones for which the closest rational approximation to
c/q satisfying (198) have denominator 12 or 18. These are the fractions 1/12, 5/12, 7/12,
11/12, 1/18, 5/18, 7/18, 11/18, 13/18, and 17/18, which correspond to c’s close to 42.7,
213.3, 298.7, 469.3, for r = 12, and 28.4, 142.2, 199.1, 312.9, 369.8, 483.6 for r = 18. The
allowed range around these values, by the same reasoning as above, are ±q/(2r2) which is
±1.8 for r = 12 and ±0.8 for r = 18. Thus the only values of c which give r = 12 or 18 are
c ∈ {28–29,41–44,142–143,199,212–215, 297–300,313,369–370,468–471,483–484}. Summing
the probabilities for observing these values of c gives just under 0.04%.

Thus, in summary, we have found that step 6 gives the correct r about 33% of the time,
an incorrect r which is rejected at step 7 about 67% of the time, and an incorrect r which
passes step 7 and therefore gives a wrong answer less than 0.04% of the time. Therefore, on
average we have to do the quantum part of the computation 3 times to get an answer that
is not rejected at step 7, and of those answers, 3 · (0.04%) ≈ 0.1% are wrong.

We will see in section 5.4 that this basic behavior holds true for arbitrarily large N :
on average, the quantum computation will have to be repeated a small number of times
(a number which only grows with N as log logN), and will return a wrong answer only a
small percentage of the time. So the correct answer can be found with high confidence by
repeating the whole algorithm on a small number, T , times.

Let us emphasize the basic reasons why Shor’s algorithm works: (1) The order is the
period of the discrete exponential, and the quantum Fourier transform gives a probability
distribution which is very sharply peaked at multiples of the period, giving a good probability
of observing values near these multiples. (2) And we only need to observe values near
the multiples because we know that the period is less than N , and so can deduce it by
approximating to the closest rational with such a denominator. (3) A substantial fraction
of wrong answers can be returned, especially if the correct period itself has many different
prime factors, but these can be easily and almost completely screened out since the discrete
exponential is easily calculated.

65

5.3 Appendix: Rational approximant algorithms

This algorithm provides a way of approximating any given rational number, φ, by other
rationals.

If φ = d0/r0 in lowest form (gcd(r0, d0) = 1), then divide d0 by r0 using the long division
algorithm to find d0 = d1r0 + r1, so φ = d1 + (r1/r0) = d1 + 1/(r0/r1). Now divide r0 by r1
to find r0 = d2r1 + r2. Thus φ = d1 + 1/(d2 + 1/(r1/r2)). Clearly this can be continued by
now dividing r1 by r2, and so on. At the ith step, we have ri−2 = diri−1 + ri and

φ = d1 + 1/(d2 + 1/(d3 + · · ·+ 1/(di−1 + 1/(di + (ri/ri−1))) · · ·)).

This expansion terminates for any rational φ since the series of remainders {ri} is strictly
decreasing. If d0 and r0 are both (logN)-bit integers, then the continued fraction expan-
sion can be computed using on the order of (logN)3 operations—that is, logN steps each
requiring (logN)2 operations to do the arithmetic.

If you truncate a continued fraction expansion by simplying dropping the remainder
terms at, say, the ith step,

φi := d1 + 1/(d2 + 1/(d3 + · · ·+ 1/(di−1 + 1/(di)) · · ·)), (199)

one gets a series of rational numbers φi which approximate φ more closely as i increases.
These truncations, φi, are called convergents of the continued fraction. Since the continued
fraction terminates for rational φ, we consider φ itself as a convergent.

A convenient and standard notation for continued fractions is as a bracketed list of the
di. Thus (199) will be written

φi = [d1; d2, d3, · · · , di].

Note that the continued fraction algorithm implies that while d1 may be an arbitrary
integer (positive, negative, or zero), the rest of the di are all positive integers. Note
also that there is a slight ambiguity in this notation for finite continued fractions, since
[d1; d2, · · · , di−1, di] = [d1; d2, · · · , di−1, di − 1, 1] if di > 1. This follows easily from (199).
This ambiguity can removed by using only the shorter form for the continued fraction; the
last di in such continued fractions will always be greater than 1.

The useful fact (which we will not prove) about the convergents φi is that they generate
all the best rational approximations to φ. A best rational approximation to φ is a rational
number p/q, (q > 0, gcd(p, q) = 1) that is closer to φ than any approximation with a smaller
denominator. The algorithm for listing all the best rational approximants to φ is:

1. Use the continued fraction algorithm to form the list of all convergents to φ. (This is a
finite list if φ is rational.)

2. Form new continued fractions from each convergent [d1; d2, . . . , di] by replacing the last
term di with all possible d′i such that di > d′i ≥ di/2.

3. The set of finite continued fractions found from combining those generated in steps 1
and 2 include all the best rational approximations to φ. (The ones with d′i = di/2
may not be best rational approximations; there is a special rule for this case, but it is
complicated so we’ll ignore it here.)

66

Furthermore, if you arrange this list of finite continued fraction in “alphabetical” order of
increasing strings of {di}’s, then, when reexpressed as fractions φi = pi/qi in lowest terms,
they will be in order of strictly increasing denominators qi.

An example will illustrate this. φ = 27/32 has continued fraction [0; 1, 5, 2, 2]. So the list
of its best rational approximations is

φi [0;1] [0;1,3] [0;1,4] [0;1,5] [0;1,5,1] [0;1,5,2] [0;1,5,2,1] [0;1,5,2,2]
pi/qi 1 3/4 4/5 5/6 6/7 11/13 16/19 27/32

|φ− φi| ≈ 0.16 0.09 0.04 0.010 0.013 0.0024 0.0016 0
1/(2q2i) ≈ 0.5 0.03 0.02 0.014 0.010 0.0030 0.0014 0.0005

Here we’ve listed the continued fraction form on the first line, the rational form on the second,
the approximate value of the difference from φ on the third. On the last line, for later use,
we’ve also listed the approximate value of 1/(2q2i). Note that in this list [0; 1, 5, 1] = 6/7 is
not a best rational approximation since it is further from φ than [0; 1, 5] = 5/6 which has a
smaller denominator. This is an example of a case where d′i = di/2 and should be discarded.
Thus, from this list and the theorem stating that these are all the best rational approximants
to φ, we can immediately read off the answer to questions like: What is the best rational
approximation to 27/32 with denominator less than 17? Answer: 11/13.

Recall that step 6 of Shor’s algorithm requires finding the closest rational d/r to φ = c/q
with r < N . Clearly this question is answered by the continued fraction/best rational
approximant algorithm we have just described, and we have seen above that it can be done
in polynomial time.

But step 6 has a further condition, namely that the best rational approximation d/r to
c/q must also satisfy (198). This is a strong condition which actually simplifies the problem.

To see this, observe that if p and q are coprime integers such that∣∣∣∣pq − φ
∣∣∣∣ ≤ 1

2q2
, (200)

then p/q is a best rational approximation to φ. This is because the closest another rational
p′/q′ (not equal to p/q) could be to p/q is 1/qq′ as shown by putting them over a common
denominator. Thus for such rationals with q′ ≤ q, the closest they can come to p/q is always
greater than 1/q2 and so would violate the inequality (200). Thus all p/q satisfying (200)
can be found by the continued fraction/rational approximant algorithm.

Note, however, that the converse to the last paragraph is not true: there can be best
rational approximants which do not obey (200). Indeed, comparing the third and fourth
lines of the table in the φ = 27/32 example, we see that though 3/4, 4/5, and 16/19 are best
rational approximations, they do not satisfy (200).

Finally, there is a theorem (which we will not prove) that the best rational approximants
satisfying (200) are convergents of φ—though not all convergents satisfy (200). Thus, step
6 of Shor’s algorithm is reduced to just looking through the convergents to φ (instead of
having to look through all the best rational approximations) and checking which of them
with denominator less than N satisfy (200).

67

5.4 Appendix: The behavior of Shor’s algorithm

We compute the probability P (c, k) that we measure the machine to be in the particular state
|c〉|xk (mod N)〉 for general x and N . We may assume 0 ≤ k < r = ord(x,N). Summing
over all possible ways of reaching this state we find

P (c, k) =

∣∣∣∣∣1q∑
a

′
exp

(
2πiac

q

)∣∣∣∣∣
2

where the sum is only over those a, 0 ≤ a < q such that xa = xk (mod N). Because
ord(x,N) = r, this sum is equivalently over all a satisfying a = k (mod r). Writing a = br+k,
we find that

P (c, k) =

∣∣∣∣∣∣1q
b(q−k−1)/rc∑

b=0

exp

(
2πi(br + k)c

q

)∣∣∣∣∣∣
2

.

We can ignore the exp(2πikc/q) factor, as it can be factored out of the sum and has magnitude
1. We can also replace rc with {rc}q where {rc}q = rc (mod q) and is in the range −q/2 <
{rc}q ≤ q/2. This leaves us with the expression

P (c, k) =

∣∣∣∣∣∣1q
b(q−k−1)/rc∑

b=0

exp

(
2πib{rc}q

q

)∣∣∣∣∣∣
2

.

Since q > N2 while k < r < N , the upper limit of the sum is approximately approximated
q/r. If {rc}q is small compared to q then changing variables to t = b/q, the sum can be
further approximated by the integral

P (c, k) ∼

∣∣∣∣∣
∫ 1/r

0

dt e2πi{rc}qt

∣∣∣∣∣
2

=
1− cos[2π{rc}q/r]

2π2|{rc}q|2
if |{rc}q| � q. (201)

Using the fact that 1− cosx ≥ 2x2/π2 if |x| ≤ π, this implies the lower bound

P (c, k) ≥ 4

π2r2
if |{rc}q| ≤

r

2
. (202)

Note that |{rc}q| ≤ r/2 automatically ensures the restriction |{rc}q| � q needed in the
approximation (201).

Now, the restriction − r
2
≤ {rc}q ≤ r

2
is satisfied when there is a d such that − r

2
≤

rc− dq ≤ r
2
. Dividing by rq gives∣∣∣∣cq − d

r

∣∣∣∣ ≤ 1

2q
≤ 1

2N2
≤ 1

2r2
, (203)

since q > N2 and N > r. We recognize this to be a necessary condition for d/r to be a
best rational approximation to c/q, and hence there is at most one fraction d/r with r < N
satisfying the above inequality. We have discussed earlier how a continued fraction expansion
of c/q can then determine d/r in polynomial time.

68

If we have the fraction d/r in lowest terms, and if d happens to be coprime to r, this will
give us r, and the algorithm returns the correct answer. We will now count the number of
states |c〉|xk (mod N)〉 which enable us to compute r in this way. There are φ(r) possible
values for d coprime to r. The condition for (202) to hold is the first inequality in (203),
which when multiplied by q gives |c − (qd/r)| ≤ (1/2). This implies there is one value of c
for each d. There are also r possible values for xk (mod N) since r = ord(x,N). Thus there
are rφ(r) states which would enable us to obtain r.

Since we have seen in (202) that each of these states occurs with probability at least
4/(π2r2), we obtain r with probability at least 4φ(r)/(π2r). Recall that φ(r) is just the
number of numbers less than r which are coprime to r. It is a deep arithmetic fact (related
to the average distribution of primes) that φ(r), though less than r, grows almost as fast as
r for large r. In particular, it is a theorem (which we will not prove) that

φ(r)

r
>

C

log log r

for some positive constant C. This shows that we find r at least a C/ log log r fraction
of the time. Since r < N , this means that by repeating the measurement only on order
O(log logN) times, we are assured of a high probability of success.

But, as we have discussed above, the algorithm can also give a false positive if it returns
an r′ which is a multiple of the correct r, i.e., r′ = mr with m > 1. This can never happen
for the c’s satisfying the condition in (202) since as we have seen this condition assures that
the closest rational approximation to c/q is d/r, and so returns r′ = r if gcd(d, r) = 1, or
r′ = r/gcd(d, r) if not. In the first case the correct answer is returned, and in the second
case r′ < r, so is rejected by the algorithm in step 7. So the only possible cases where an
r′ = mr with m > 1 could be returned is if the condition on c in (202), or equivalently (203),
is violated.

We have seen that there are at most r possible values of c satisfying (203), and there are
only r values of xk (mod N) that can be measured, so the total probability of a measurement
satisfying (203) is at least r2P (c, k) ≥ 4/π2 by (202). Thus, the probability not to observe
such a c and k is

Pfalse < 1− 4

π2
≈ 0.6. (204)

This justifies the probability bound quoted in step 9 of Shor’s algorithm. Note, however, that
this upper bound on the probability of obtaining a false positive result is very crude. Just
because c is outside the range |{rc}q| ≤ r/2, does not mean that an r′ = mr will necessarily
be returned. Indeed, the resulting r′’s will be more or less random, and so the great majority
of them will be rejected in step 7 of the algorithm because xr

′ 6= 1 (mod N). Indeed, as we
discussed in some detail in the example in section 5.2, the false positives can only come from
a narrow range of possible values of c, and these c’s occur in regions where the probabilities
are very small. A general analysis along these lines, which we will not pursue here, gives
much more stringent bounds on Pfalse, which mean in practice that the possibility of false
positives can be ignored.

The situation is slightly more complicated than there simply being a better bound on Pfalse. If

the order r = ord(x,N) is so small that log r � logN , then there can actually be a relatively

69

high probability of a false positive r′ = mr being returned. But in that case r′ has a small

factor (r itself), so is easily factorized, uncovering the correct r. If instead log r > (logN)/B

for some appropriate constant B (say, B = 3), then the offending values of c are very sparse,

and one can easily estimate Pfalse < 10−3.

70

Part III

Noise and Error Correction

6 The need for quantum error correction

Suppose a quantum algorithm uses Q qubits and takes S steps (gates). If the typical time
needed to perform an elementary qubit operation is ts, then the total time to run the algo-
rithm is

T ' tsS.

The value of ts is an engineering matter: it depends on the design of quantum gates. But
reasonable estimates of the minimum possible ts follow from quantum mechanics. Qubits are
physical 2-state systems with some typical energy difference ∆E between the states. The
uncertainty relation ts ∆E ≥ ~ implies

ts &
~

∆E
.

Qubits will (almost certainly) be realized on atomic systems using energy splittings less than
(optimistically8) ∆E ∼ 10−3 eV, implying

ts &
~

10−3eV
∼ 10−15eV · s

10−3eV
∼ 10−12s.

So there is no reason, in principle, that quantum computers can’t be as fast as present-day
computers.

Noise

But, the real time for a computation is not given by T = tsS. Real-world computers also
experience noise, which can cause computations to fail with some probability 1−P . There-
fore, on the average, you must run the algorithm 1/P times to get a successful computation.
So

T =
tsS

P
.

Let’s estimate P . To do this we need some information about the noise. “Noise” is just an
(unwanted) coupling of the computer to its environment. Since the environment is not under
complete control, this coupling has a random nature. (If we could detect a pattern to the
noise, we could presumably understand and eliminate its source—these are the “systematic
errors” of experiment.) We assume that the noise acts locally and independently on each
component of the computer. Then the noise will give some failure probability γ per qubit
per second. We write

γ :=
1

τd
,

8It is hard to make ∆E larger because then there are typically many states in atomic systems with smaller
splittings, making it difficult to isolate the states with the larger ∆E from all the other states.

71

defining the decoherence time τd as the typical time it takes noise to substantially alter
the state of a given qubit.

Since there are Q qubits undergoing S steps each taking ts seconds, the total probability
P of a successful computation is

P ≈ (1− γts)QS ≈ e−γtsQS = e−QSts/τd .

So, the computation time

T ∼ tsS

P
∼ tsSe

QSts/τd

grows exponentially with the number of gates S.
For example, Shor’s factoring algorithm to factor a large number N ∼ 2L (i.e., about

L bits long) takes about S ∼ L3 steps on Q ∼ L qubits in the best implementation. So
the total time, with noise, for the computation is T ∼ tsL

3eL
4ts/τd . So we can ignore the

contribution of the noise if L4(ts/τd) . 1. For practical applications we are interested in
L ∼ 100 to 1000, implying we need (ts/τd) . 10−8 to 10−12 otherwise the quantum algorithm
performs no better than a classical algorithm.

At present (∼ 2015), (ts/τd) ' 10−2 or 10−3 is the best we can do.9 With present
technology it is hard to imagine increasing τd by more than 103 in the next 10 years, leaving
us still far short of a practical quantum computer. And this ignores the question of scalability
of any technology to many quantum gates!

Classical error correction

Generally, noise is very small in classical computers using semiconducting devices, (ts/τd) '
10−17, and so can be ignored. But in some applications (e.g., transmitting data over long
wires) the noise is substantial. In that case we counteract the noise with error-correcting
codes.

The simplest such code is the majority voting code:
(1) encode the information by copying it to 2 other bits,
(2) periodically measure all three bits, compare, and correct: e.g.,

1 −→
(1):encode

1
1
1

−→
noise

0
1
1

 −→
(2):correct

1
1
1

 −→
decode

1.

It turns out this strategy can remove the exponential noise factor in T at a relatively minor
cost: a constant overall factor increasing SQ. The basic idea is that if p is the error rate due
to noise, then encoding reduces the overall error rate to O(p2) < p as long as p is less than
some threshold value.

Quantum error correction

Can this strategy also work for quantum computers?

9This is for 2-qubit quantum gates; for 1-qubit gates we can currently do ∼ 10−6. In 2016 the record for
2-qubit decoherence time was τd . 10−4 s.

72

There are some obvious problems. Step (1) of the classical error-correction algorithm
involves duplicating the classical bits. But the no-cloning theorem says that duplication of
qubits is impossible. Step (2) of the classical algorithm involves measuring the bits. But
measurements irreversibly change the state of a quantum system.

Nevertheless, Peter Shor showed in 1994 that a quantum analog of error correction does
exist. For the past couple of decades, much of the theoretical work on quantum computation
has been on error correction.

The goal of the analysis of error correction is to show how to do fault-tolerant quantum
computations in such a way that one does not exponentially increase the number of gates
needed for the computation. The central result (which we will motivate only for the special
case of qubit transmission in a noisy channel) is the

Threshold theorem: If you want to carry out a quantum algorithm using
N gates, but each gate fails with probability p, then it is possible to design a
quantum algorithm to do the computation with an arbitrarily small overall failure
probability ε by using only O(N(ε−1 logN)x) gates for some positive x, as long
as p < pth, where pth is some constant threshold probability.

The value of the required threshold probability, pth (and the exponent x) depends on the
error-correction code. For example, using the Steane code for error correction (which we
will not describe in detail) one needs pth = (ts/τd) . 10−4. This value is conceivably within
reach.

7 Models of noise

The goal of this section is to understand how to model the effect of noise on quantum systems.
The central result will be to show that on a single qubit, the most general noise has the effect
of mapping states to density matrices as:

noise :|ψ〉 7→ ρ =
∑
k

Ek|ψ〉〈ψ|E†k

with ∑
k

EkE
†
k = I

for some
Ek := ek0I + ekxX + ekyY + ekzZ.

(Here X, Y , and Z are alternate names for the Pauli matrices σx, σy, and σz, respectively.)
To get to this result, first we will briefly review the standard model of classical noise. We
next review the density matrix formulation of quantum mechanics in some detail since it is
necessary to describe noise. And then we develop the quantum operations formalism which
gives rise to the above result.

73

7.1 Classical noise

Noise is a coupling to an “outside” system about which we have incomplete knowledge. We
model its effect on a single classical bit as follows.

A gate acts on the initial state of the bit in a predictable way, which we can describe
as a map from the initial state of the bit, X ∈ {0, 1}, to its final state, Y ∈ {0, 1}. Once
noise is added, the behavior of the gate becomes unpredictable, so we can at best only have
probabilistic information about the state of the bit. So call the probabilities of the various
initial and final states{

p0 := prob(X = 0)
p1 := prob(X = 1)

{
q0 := prob(Y = 0)
q1 := prob(Y = 1)

Then the action of the gate plus noise can be modeled as a linear map of the initial to final
probabilities:

qj =
1∑
i=0

Ejipi, (205)

where the matrix elements Eji are the conditional probabilities

Eji = prob(Y = j|X = i).

The probability map (205) can also be written in matrix notation

~q = E~p,

and refer to E as the evolution matrix for the gate.
We model the noise as acting independently on each gate, so each gate will have its own

evolutions matrix, E1, E2, and so forth:

X −→
E1

Y −→
E2

Z
~p ~q ~r

so that in matrix notation
~r = E2E1~p.

The assumption of independent errors is a physical assumption: it should be tested in a given
situation. When errors are not independent, but act coherently on many bits, we can still
error-correct, but to do so we must use different codes. But we will not discuss these kinds
of noise models or error codes further.

Note that even though we are dealing with probabilities, this is not quantum mechanics:
the probabilities are not inherent, but just reflect our lack of detailed knowledge about the
source of the noise.

The evolution matrix E for a single bit is not arbitrary since the probabilities must add
to one. Thus

~p =

(
p

1− p

)
, ~q =

(
q

1− q

)
,

74

where 0 ≤ p, q ≤ 1 are the probabilities that X = 0 and Y = 0 respectively. Likewise, the
sum of the two probabilities in E~p must sum to one, implying

E12 + E22 + (E11 − E12 + E21 − E22)p = 1.

Since this must be true for all p, it implies E12 + E22 = 1 and E11 + E21 = 1, so we can
parameterize the evolution matrix by just two numbers as

E :=

(
E11 E12

E21 E22

)
=

(
1− f e
f 1− e

)
. (206)

Also, 0 ≤ q ≤ 1 implies 0 ≤ 1− e+ (1− f − e)p ≤ 1 for all p, implying

0 ≤ e, f ≤ 1.

This can be summarized by saying that classical 1-bit noise is characterized by 2 numbers:
the probability e for “1” to flip, and an independent probability f for “0” to flip. We want
to find a similar characterization of noise for qubits.

7.2 Density matrices

Our challenge is to incorporate both quantum uncertainty and noise uncertainty in one
formalism. A state |ψ〉 gives complete information on a system (though only gives statistical
predictions). But in realistic situations we usually only have partial information; i.e., we
can’t be sure exactly which state the system is in.

When we repeat an experiment (or quantum computation) we only know the initial state
of the system is

|ψ〉 =


|ψ1〉 with probability p1
|ψ2〉 " p2
...

...
|ψn〉 " pn

(207)

with
∑n

a=1 pa = 1 and pa ≥ 0. This kind of probabilistic description of the state of a system
is often called a mixed state, or sometimes an incoherent superposition of states or an
ensemble of states. Note that the |ψa〉 are not necessarily orthogonal, but we do assume
they are all distinct and normalized. If there is only one line in (207), i.e. |ψ〉 is a definite
state (with probability 1), then we say that it is a pure state.

One might guess (wrongly!) that this state (207) is just a superposition of the |ψa〉 states,
say

|ψ〉 ?=
n∑
a=1

√
pa|ψa〉. (208)

(You should check that this state is normalized if the |ψa〉 are orthonormal.) However, we
can see that this guess is wrong in a number of ways. First, on a basic conceptual level
(208) cannot be right because it is a definite state, not like (207) which is by definition not a
definite state. On a more prosaic level, we can see it is wrong by seeing what the two states,
(207) and (208), predict for a measurement.

75

If we measure an observable M in state |ψa〉, we get the expectation value10

〈M〉a = 〈ψa|M |ψa〉. (209)

Since, according to (207) we are in state |ψa〉 with probability pa, the total expectation value
will be

〈M〉 =
∑
a

pa〈ψa|M |ψa〉. (210)

But in the pure state |ψ〉 of (208) we would have

〈M〉 ?
= 〈ψ|M |ψ〉 =

∑
a,b

(
√
pa|ψa〉)†M

√
pb|ψb〉

=
∑
a

pa〈ψa|M |ψa〉+
∑
a6=b

√
papb〈ψa|M |ψb〉.

The first term agrees with the right answer (210), but the second, interference, term need
not vanish, showing that (208) cannot be right.

If {|i〉} is an orthonormal basis of the Hilbert space, then recall that completeness of the
basis means that I =

∑
i |i〉〈i| where I is the identity operator. Also recall that the trace of

an operator is defined to be tr(X) :=
∑

i 〈i|X|i〉. These can be used to rewrite (209) in a
suggestive way:

〈M〉 =
∑
a

pa〈ψa|M |ψa〉 =
∑
a

pa〈ψa|MI|ψa〉

=
∑
a

pa〈ψa|M

(∑
i

|i〉〈i|

)
|ψa〉 =

∑
i,a

pa〈ψa|M |i〉〈i|ψa〉

=
∑
i,a

pa〈i|ψa〉〈ψa|M |i〉 =
∑
i

〈i|

(∑
a

pa|ψa〉〈ψa|

)
M |i〉

= tr

[(∑
a

pa|ψa〉〈ψa|

)
M

]
. (211)

This motivates us to identify the mixed state (207) with the operator

ρ :=
n∑
a=1

pa|ψa〉〈ψa|, with 0 ≤ pa ≤ 1 and
n∑
a=1

pa = 1. (212)

ρ is called a density matrix, and encodes all the quantum-mechanical information about
the mixed state. For example, (211) implies

〈M〉 = tr(ρM). (213)

10Recall the definition and interpretation of the expectation value, discussed in section 0 below equation
(30). An examination of the rules of quantum mechanics shows that all measurements in quantum mechanics
can be written in terms of expectation values, so it is sufficient to focus just on them.

76

Exercise 7.1 Show that tr(AB) = tr(BA) for all A, B.

Exercise 7.2 Show that tr(ρ) = 1 using
∑

a pa = 1.

Exercise 7.3 Show that ρ = ρ†.

Exercise 7.4 Show that ρ is a positive operator: 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉.

These last three properties actually define density matrices.
It is important to note that two different mixed states (207) can give rise to the same

density matrix (212). For example, consider the two mixed states

|ψ〉 =

{
|ψ1〉 with probability p1 = 1/2
|ψ2〉 " p2 = 1/2

with |ψ1〉 and |ψ2〉 orthogonal, and

|ψ′〉 =

{
|ψ+〉 with probability p+ = 1/2
|ψ−〉 " p− = 1/2

where |ψ±〉 := (|ψ1〉 ± |ψ2〉)/
√

2. The density matrix for the first state is ρ = (|ψ1〉〈ψ1| +
|ψ2〉〈ψ2|)/2. The density matrix for the second is

ρ′ =
1

2
· 1

2

(
|ψ1〉 − |ψ2〉

)(
〈ψ1| − 〈ψ2|

)
+

1

2
· 1

2

(
|ψ1〉+ |ψ2〉

)(
〈ψ1|+ 〈ψ2|

)
=

1

2

(
|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|

)
= ρ.

But all possible quantum measurements only depend on ρ. Therefore we learn that these
two different-looking mixed states are physically equivalent.

What is the density matrix of a system that is actually in a pure state |ψ〉 100% of the
time? Then the sum in (212) is just one term with pa = 1, giving ρ = |ψ〉〈ψ|. So for a pure
state ψ we have the correspondence

|ψ〉 ←→ ρ = |ψ〉〈ψ|. (214)

Note that in this case ρ is a projection operator (ρ2 = ρ and ρ = ρ†) which implies
tr(ρ2) = tr(ρ) = 1. You can show that for any density matrix,

tr(ρ2) ≤ 1, and tr(ρ2) = 1 iff ρ is a pure state. (215)

This gives a useful way of telling whether a density matrix corresponds to a pure state or
not.

To summarize: we can describe both the statistical uncertainty coming from our lack of
knowledge of a system together with the inherent quantum uncertainties by describing sys-
tems in terms of operators ρ satisfying ρ† = ρ ≥ 0 and trρ = 1 instead of states. Everything
we can do with states |ψ〉, we can do with the corresponding ρ = |ψ〉〈ψ|. But we can also
describe mixed states with ρ’s satisfying trρ2 < 1.

77

Time evolution of density matrices.

ρ(t) =
∑
a

pa|ψa(t)〉〈ψa(t)| =
∑
a

paU(t)|ψa(0)〉〈ψa(0)|U †(t)

= U(t)

(∑
a

pa|ψa(0)〉〈ψa(0)|

)
U †(t),

implies

ρ(t) = U(t) ρ(0)U †(t) (216)

where U(t) is the unitary operator which gives the time evolution of states. Thus, in terms
of quantum circuit diagrams, the usual gate action on pure states,

|ψ〉 U U |ψ〉 , (217)

becomes

ρ U UρU † (218)

on density matrices.

Measurements with density matrices. I’ll just give the results—see [NC] section 2.4
for the details.

If we measure an observable M = M †, recall that the only results that can be observed
are the eigenvalues of M . Recall from the spectral decomposition theorem (21) that M
can be written as a sum of orthogonal projection operators

M =
∑
i

λi|ψi〉〈ψi|, λi ∈ R,

with {|ψi〉} an ortho-normal basis so that 〈ψi|ψj〉 = δij. This implies that M |ψj〉 = λj|ψj〉.
So the {λi} are the eigenvalues of M , i.e., the set of possible outcomes of measurement of
M . (And the {|ψi〉} are a basis of eigenvectors of M .) More abstractly, we write

M =
∑
i

λiPi

where Pi := |ψi〉〈ψi| is the projection operator onto the eigenspace of the ith eigenvalue
λi. Hermiticity of M implies that P 2

i = Pi and PiPj = 0 if i 6= j.
Then, when we measure M in a (mixed) state represented by a density matrix ρ, we find

prob(M = λi) = tr(Piρ), (219)

and the density matrix changes to

ρ→ ρ′ =
1

tr(Piρ)
PiρPi (220)

if M = λi is actually observed. (This is for an ideal or non-destructive measurement.)

Exercise 7.5 Show that when ρ corresponds to a pure state, ρ = |ψ〉〈ψ|, that (219) and
(220) reduce to the familiar “Born rules” for quantum measurements, namely prob(M =
λi) = |〈ψ|ψi〉|2 and |ψ〉 → |ψ′〉 = eiα|ψi〉, where eiα is a phase you should compute.

78

Main example: a single qubit

A single qubit is described by a 2-dimensional Hilbert space with orthonormal basis {|0〉, |1〉}.
In this basis ρ is a 2× 2 hermitian matrix with trρ = 1 and positive. Hermiticity implies

ρ =
1

2

(
r0 + rz rx − iry
rx + iry r0 − rz

)
for real r0, rx, ry, rz. trρ = 1 implies r0 = 1. Positivity implies that all the eigenvalues of r
are positive. To find the eigenvalues, solve the characteristic equation

0 = det(ρ− λI) = 1
4

[
(1− 2λ)2 − r2x − r2y − r2z

]
⇒ λ =

1

2

[
1±

√
r2x + r2y + r2z

]
.

So positivity implies that r2x + r2y + r2z ≤ 1. Rewrite ρ as

ρ =
1

2
{I + rxX + ryY + rzZ}

where

X :=

(
0 1
1 0

)
= σx, Y :=

(
0 −i
i 0

)
= σy, Z :=

(
1 0
0 −1

)
= σz (221)

are the Pauli matrices. We will use a vector notation ~X = (X, Y, Z), ~r = (rx, ry, rz), so that
the general 1-qubit density matrix is parameterized as

ρ =
1

2

{
I + ~r · ~X

}
with |~r| ≤ 1. (222)

So, the general density matrix for a single qubit is parametrized by a 3-vector ~r with |~r| ≤ 1,
the Bloch ball, shown in figure 3.

x

ry

rz
A

CD

B

r

Figure 3: The Bloch ball: any point in the interior or on the boundary corresponds to a
1-qubit ρ. The states corresponding to the points A, B, C, and D are discussed in the notes.

When does ρ correspond to a pure state? ρ is pure if and only if tr(ρ2) = 1.

79

Exercise 7.6 Show that for the 1-qubit density matrix tr(ρ2) = (1 + ~r · ~r)/2.

Thus ρ is pure if and only if |~r| = 1. This describes the Bloch sphere, the boundary of the
Bloch ball. Thus, for example, the “north pole” of the Bloch sphere, ~r = (0, 0, 1) or point A
in figure 3, is the density matrix

ρA =
1

2
(I + Z) =

1

2

(
1 + 1 0

0 1− 1

)
=

(
1 0
0 0

)
=

(
1
0

)(
1 0

)
= |0〉〈0|,

and therefore corresponds to the pure state |0〉.

Exercise 7.7 Show that the “south pole” of the Bloch sphere, ~r = (0, 0,−1) or point B in
figure 3 corresponding to the density matrix ρB = (I − Z)/2, is the pure state |1〉.

Exercise 7.8 Show that the equatorial point ~r = (1, 0, 0), or point C in figure 3 correspond-
ing to the density matrix ρC = (I +X)/2 is the pure state (|0〉+ |1〉)/

√
2.

What does the center of the ball, ~r = 0, correspond to? In this case ρ = I/2 = (|0〉〈0|+
|1〉〈1|)/2. This is a mixed state which is |0〉 50% of the time, and |1〉 50% of the time.
Therefore ~r = 0 corresponds to the maximally mixed state, the state with no information,
or maximum entropy.

Entropy, S, is a measure of the disorder of a system; more entropy means less information
is available about the state of the system. One general measure of entropy in quantum
mechanics is

S = −tr(ρ ln ρ).

Recall that the logarithm of a matrix is just the inverse of exponentiation, and has an
expansion

ln(I + A) = A− 1
2
A2 + 1

3
A3 − · · · ,

for A’s with entries small compared to 1.

Exercise 7.9 Show that the entropy of 1-qubit state with density matrix ρ with |~r| � 1 is
S ≈ ln 2− 1

2
~r · ~r +O(r4).

In general, the smaller |~r|, the greater the entropy, so the less information ρ contains about
the state of the system.

Exercise 7.10 Show that the general 1-qubit ρ can be written as ρ =
∑1

a=0 pa|ψa〉〈ψa| with
p0 = (1 + |~r|)/2 and p1 = (1− |~r|)/2, where

|ψ0〉 := cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, |ψ1〉 := e−iφ sin

θ

2
|0〉 − cos

θ

2
|1〉,

where (θ, φ) are the polar angles of the vector |~r| (i.e., rz = |~r| cos θ, rx = |~r| sin θ cosφ, and
ry = |~r| sin θ sinφ).

80

How does noise give rise to density matrices?

If we had complete knowledge of the environment and its interaction with our computer, then
there would be no need for density matrices. A computation with noise can be described as

|ψcomp〉
U |Ψout〉

|χenv〉
(223)

where the computer’s initial state |ψcomp〉 and the environment’s intial state |χenv〉 interact
and undergo some unitary evolution U (representing the effects of noise and the computer
gates) giving some final state |Ψout〉.

Note that |Ψout〉 will, in general, entangle the computer with the environment. This
just means that the final state need not factorize as a tensor product of |computer〉 ⊗
|environment〉. To write the most general final state, introduce a basis for the state space. In
particular, say {|a〉} is an orthonormal basis of Hcomp, the computer’s Hilbert space, while
{|n〉} is an orthonormal basis of Henv, the environment’s Hilbert space. Then

|Ψout〉 =
∑
a,n

Ψan|a〉|n〉

for some complex numbers Ψan satisfying
∑

a,n |Ψan|2 = 1.
Now say we wanted to measure some observable M on the computer’s state. That means

that as an operator on Hcomp ⊗Henv, the observable is of the form M ⊗ I. Then

〈M ⊗ I〉 = 〈Ψout|M ⊗ I|Ψout〉 =

(∑
a,n

Ψ∗an〈a|〈n|
)
M ⊗ I

(∑
b,m

Ψbm|b〉|m〉
)

=
∑
a,b,n,m

Ψ∗anΨbm〈a|M |b〉〈n|m〉 =
∑
a,b,n,m

Ψ∗anΨbm〈a|M |b〉δnm

=
∑
a,b

(∑
n

Ψ∗anΨbn

)
〈a|M |b〉.

We can put this result in a more suggestive form by inserting the completeness relation
I =

∑
c |c〉〈c| on the computer states, giving

〈M ⊗ I〉 =
∑
a,b,c

(∑
n

Ψ∗anΨbn

)
〈a|M |c〉〈c|b〉 =

∑
a,b,c

(∑
n

Ψ∗anΨbn

)
〈c|
(
|b〉〈a|

)
M |c〉

=
∑
c

〈c|

[∑
a,b

(∑
n

Ψ∗anΨbn

)
|b〉〈a|

]
·M |c〉 = trHc(ρM)

where we have defined

ρ :=
∑
a,b

(∑
n

Ψ∗anΨbn

)
|b〉〈a|

81

in the last line. Comparing to (213), we identify ρ as the density matrix for the computer,
after interaction with the environment. Note that ρ is an operator on Hc only. You should
check that the conditions for a density matrix, namely, ρ = ρ†, trc(ρ) = 1, and ρ ≥ 0, are all
satisfied.

Suppose |Ψout〉 were not entangled:

|Ψout〉 = |ψ′comp〉 ⊗ |χ′env〉 :=

(∑
a

ψa|a〉
)
⊗
(∑

n

χn|n〉
)

=
∑
a,n

ψaχn|a〉|n〉,

with
∑

a |ψa|2 =
∑

n |χn|2 = 1. Then the computer’s density matrix becomes

ρ =
∑
a,b,n

ψ∗aχ
∗
nψbχn|b〉〈a| =

∑
a,b

ψ∗aψb

(∑
n

|χn|2
)
|b〉〈a|

=

(∑
b

ψb|b〉
)(∑

a

〈a|ψ∗a
)

= |ψ′comp〉〈ψ′comp|.

Thus we see that if there is no entaglement with the environment, ρ corresponds to a pure
state. Recalling that a pure state is one about which we have complete information, we
conclude that

Noise = entanglement with the environment.

7.3 Quantum operations

Now that we have the machinery to deal with mixed states (i.e., classical uncertainty) in
quantum mechanics, we apply it to modelling noise.

Recall that we modelled the action of noise and gate together on a classical bit by an
evolution matrix E taking ~p→ ~q = E~p where ~p is the probability distribution of the input bit,
and ~q is the probability distribution of the output bit. Analogously, in quantum mechanics,
if ρ is the density matrix of the input state of the computer, and ρ′ is the density matrix
of the output state of the computer, then we want to model the most general effect of any
gates plus noise as a map E taking the input density matrix to the output one:

ρ′ = E(ρ).

We want to characterize the most general E allowed by the rules of quantum mechanics.
Such E ’s are called quantum operations (not to be confused with operators).

Consider the combined system of computer plus environment. It is described by a total
Hilbert space Htot = Hcomp ⊗ Henv, where Hcomp is the Hilbert space of the computer and
Henv is the Hilbert space of the environment. Suppose that initially the computer is in a
(mixed) state represented by the density matrix ρ, and the environment is in a (mixed) state
represented by the density matrix ρenv.

’
env

U ρ
ρ

tot
ρ

82

The total evolution of the combined system is by some unitary operator U on Htot. U
encodes the “gate” (the evolution of the computer states), the “noise” (the interaction of
computer and environment), and the evolution of the environment itself. Thus the mixed
state will be some density matrix ρ′tot on Htot given by

ρ′tot = U(ρ⊗ ρenv)U †. (224)

We want to extract the final density matrix ρ′ for the computer alone from ρ′tot.
We can deduce what it must be by looking at the result of an arbitrary measurement

on the computer. Suppose M = M † is an observable on Hcomp. On the total system the
observable is M ⊗ Ienv. So the expectation value of M is given by

〈M〉 = trHtot(ρ
′
tot[M ⊗ Ienv]).

Here the subscript on the trace is to remind us that we are tracing over the wholeHtot Hilbert
space. Choose orthonormal bases {|a〉} for Hcomp and {|n〉} for Henv. Then {|a〉⊗ |n〉} is an
orthonormal basis for Htot, and an easy calculation gives

〈M〉 =
∑
a,n

〈a|〈n|(ρ′tot[M ⊗ Ienv])|a〉|n〉

=
∑
a

〈a|

(∑
n

〈n|(ρ′tot[M ⊗ Ienv])|n〉

)
|a〉

:= trHcomp(ρ′M) (225)

where
ρ′ := trHenv(ρ′tot). (226)

Here the subscripts on the traces denote partial traces over the computer or environment
Hilbert spaces. They are defined by

trHcomp(A) :=
∑
a

〈a|A|a〉, trHenv(A) :=
∑
n

〈n|A|n〉,

for any operator A on the total Hilbert space. Thus trHcomp(A) is an operator on Henv, and
trHenv(A) is an operator on Hcomp. Also, trHtot(A) = trHcomp(trHenv(A)) = trHenv(trHcomp(A)).

Exercise 7.11 Show that a partial trace of a density matrix is a density matrix. That is,
show that ρ′ defined by (226) satisfies ρ′† = ρ′ ≥ 0 and trHcompρ

′ = 1 if ρ′tot has the same
properties on Htot.

Exercise 7.12 If the unitary evolution operator U acts only on the computer, so U =
Ucomp ⊗ Ienv, then show that the unitary evolution of the reduced density matrix ρ′ is given
by ρ′ → Ucompρ

′U †comp.

Combining (226) with the evolution formula (224), we conclude

ρ′ = trHenv

[
U(ρ⊗ ρenv)U †

]
:= E(ρ), (227)

83

giving the general form of a quantum operator E , since Henv, ρenv, and U are all arbitrary.
We now want to manipulate (227) to get rid of the partial trace over the environment

space. For simplicity, assume ρenv = |ψenv〉〈ψenv|, a pure state.11 Also, chose some orthonor-
mal basis {|n〉} for Henv. Then

ρ′ = trHenv

[
U (ρ⊗ |ψenv〉〈ψenv|)U †

]
=
∑
n

〈n|U (ρ⊗ |ψenv〉〈ψenv|)U †|n〉

=
∑
n

〈n|U |ψenv〉ρ〈ψenv|U †|n〉,

implying that

E(ρ) =
∑
n

EnρE
†
n, (228)

where En := 〈n|U |ψenv〉 are some operators on Hcomp, the computer’s Hilbert space. The
advantage of (228) is that only operators onHcomp appear, so we need no longer refer toHenv.
The operators En are called operation elements and encode all the relevant information
about U and |ψenv〉.

The En’s cannot be arbitrary, though. Since ρ′ = E(ρ) is a density matrix, it must satisfy
ρ′ = (ρ′)†, ρ′ ≥ 0, and trρ′ = 1. The first two are easy to check. The third implies

1 = tr(E(ρ)) = tr(
∑
n

EnρE
†
n) =

∑
n

tr(EnρE
†
n) =

∑
n

tr(E†nEnρ).

Since this should hold for any computer state ρ, it implies∑
n

E†nEn = I. (229)

(Note that, in general, (229) need not hold for En and E†n in the other order:
∑

nEnE
†
n 6= I.)

In summary: the general effect of noise on a quantum system is to map ρ → ρ′ =
E(ρ) with E given by (228) with En’s satisfying (229). This is called the operator sum
representation of a quantum operation. In our derivation of it we only assumed a unitary
evolution of the computer plus environment. But it can be generalized to include the effects
of possible of measurements done on the system as well; see [NC] section 8.2.

The operation elements En are not unique: two different sets of operation elements can
give rise to the same quantum operation. Say E(ρ) =

∑
nEnρE

†
n and F(ρ) =

∑
n FnρF

†
n

are two quantum operations. It can then be shown ([NC] theorem 8.2) that E(ρ) = F(ρ)
for all ρ if and only if En =

∑
m ũnmFm for some unitary matrix ũnm. A physical way of

understanding this is

B

~ρenv
U

ρ (ρ)ε

A

u

11To generalize, just replace ρenv with a sum over many such states.

84

where the idea is that E(ρ) shouldn’t depend on whether we observe the environment at time
A or time B.

This freedom in the choice of operation elements in the operator sum representation plays
an important role in the proofs of the main theorems concerning quantum error-correction.
We will not emphasize these proofs here, but wish to proceed a bit more intuitively.

To help build up our intuition, first note that the quantum operations of a special
form have a simple physical interpretation. Consider a pure state |ψ〉. Then E(|ψ〉) =∑

nEn|ψ〉〈ψ|E†n. Define |ψn〉 to be the normalized state that results when En acts on |ψ〉:

|ψn〉 :=
En|ψ〉
||En|ψ〉||

.

We can write this as

En|ψ〉 =
√
pn|ψn〉, where

√
pn := ||En|ψ〉||.

Thus the quantum operation takes |ψ〉 to the density matrix

E(|ψ〉) =
∑
n

pn|ψn〉〈ψn|.

Thus we interpret the quantum operation E as taking |ψ〉 to |ψn〉 with probability pn.

Exercise 7.13 Check that
∑

n pn = 1 follows from (229).

Examples: quantum operations on a single qubit

Depolarizing channel or “information loss”.
This is the simplest model of noise:

• probability γ to lose all information: ρ→ I/2,

• probability 1− γ to lose no information: ρ→ ρ.

Therefore
ρ′ = EDC(ρ) = γ 1

2
I + (1− γ) ρ.

Since ρ′ and ρ are density matrices, they can be represented by points in the Bloch ball.
Thus E(ρ) can be thought of as a map of the Bloch ball into itself. For the depolarizing
channel, recall that ρ = I/2 maps to the origin of the sphere. Then it is not hard to see that
EDC just shrinks the Bloch ball, as illustrated in figure 4.

How is EDC written in the operator sum representation? A useful identity is

1
2
I = 1

4
(ρ+XρX + Y ρY + ZρZ) (230)

for any 1-qubit ρ, where X, Y , and Z are the Pauli matrices given in (221). They have
certain very useful properties that are easily checked:

• X = X†, Y = Y †, Z = Z† are all hermitian.

85

rz

rx

εDC

1−γ

yr

Figure 4: Action of the depolarizing channel operation on the Bloch ball.

• X2 = Y 2 = Z2 = I, implying that they are all unitary, as well.

• The set {X, Y, Z, I} form a complete basis for all 2× 2 matrices.

• XY = −Y X = iZ, Y Z = −ZY = iX, and ZX = −XZ = iY .

X is also called the “bit flip” operator, Z is called the “phase flip” operator, and Y the
“bit+phase flip” operator.

Exercise 7.14 Prove (230) by writing ρ = (I + ~r ·X)/2 with |~r| ≤ 1.

Using (230) we have

EDC(ρ) =
(
1− 3

4
γ
)
ρ+ 1

4
γ (XρX + Y ρY + ZρZ) =

∑
k

EkρE
†
k

where
{Ek} =

{
1
2

√
4− 3γ I, 1

2

√
γ X, 1

2

√
γ Y, 1

2

√
γ Z
}
.

We check that (229) is indeed satisfied by computing
∑

k E
†
kEk = 1

4
(4−3γ+γ+γ+γ) I = I.

Thus the depolarizing channel has the interpretation of doing:

• nothing (I) with probability (1
2

√
4− 3γ)2 = 1− 3

4
γ,

• a bit flip (X) " " (
√
γ/2)2 = 1

4
γ,

• a phase flip (Z) " " (
√
γ/2)2 = 1

4
γ,

• a bit+phase flip (Y) " " (
√
γ/2)2 = 1

4
γ.

Note that if we do all four of these with equal probability (γ = 1) then all information is
lost: EDC = I/2.

86

Amplitude damping channel or “energy loss”.
Suppose a qubit is realised by a physical system with two energy levels. Say |0〉 is the ground
state with energy 0, and |1〉 is the excited state with energy ∆E. These might be two energy
levels of an atom, for example. Often in interaction with the environment, the higher-energy
state can decay to the lower one. For the atom this happens by the spontaneous emission of
a photon. We can model this by saying that the environment is a 2-state system: Henv has
basis {|0e〉, |1e〉}, where |0e〉 is the state with no photon, and |1e〉 has 1 photon. Then the
unitary interaction between the atom and the environment is described by

U(|0〉|0e〉) = |0〉|0e〉 (ground state does not decay),

U(|1〉|0e〉) =
√

1− γ|1〉|0e〉+
√
γ|0〉|1e〉 (excited state decays with amplitude

√
γ).

Suppose also that U(|1〉|1e〉) = |1〉|1e〉 (excited state doesn’t decay if there is already a
photon). Then unitarity of U implies

U(|0〉|1e〉) =
√

1− γ|0〉|1e〉+
√
γ|1〉|0e〉 (spontaneous absorption).

Thus we have a model of the complete interaction of the system+environment. Assuming
the environment starts in the |0e〉 state, we can then use the definition of quantum operation
(227), to find

EAD := trHenv

(
U [ρ⊗ |0e〉〈0e|]U †

)
,

= E0ρE
†
0 + E1ρE

†
1

with, in the {|0〉, |1〉} basis,

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0
√
γ

0 0

)
.

E0 is the operation element describing no decay, while E1 is the one describing the decay.
The physical interpretation of γ is thus as the probability of decay of the excited state.

In real processes, we usually speak of probability of decay per unit time. For short times,
∆t, the probability of decay is given by γ = ∆t/τ , where τ is some characteristic decay
time of the system. For longer times, t = N · ∆t, the probability of no decay occuring is
1− γ(t) ≈ limN→∞(1− (t/Nτ))N = e−t/τ , implying that γ(t) = 1− e−t/τ . In particular, for
long times γ → 1 in physical systems.

It is a good exercise to show that EAD acts on the Bloch ball by squishing it up towards
the north pole (|0〉), as illustrated in figure 5.

Bit flip channel or “classical noise”.
The bit flip channel is like classical noise in which there is probability γ that |0〉 ↔ |1〉 are
exchanged:

• probability γ to flip: |ψ〉 → X|ψ〉,

• probability 1− γ to not flip: |ψ〉 → I|ψ〉.

87

|1

|0

εAD

Figure 5: Action of the amplitude damping channel operation on the Bloch ball.

So we choose the operation elements Ek = {
√

1− γ I, √γ X}, giving

ρ→ ρ′ = EBF(ρ) = (1− γ)ρ+ γXρX.

You can show that it acts on the Bloch ball by squeezing it towards a cigar along the x-axis,
as in figure 6, where |±〉 := (|0〉 ± |1〉)/

√
2.

|−

εBF

|+

Figure 6: Action of the bit flip channel operation on the Bloch ball.

Phase flip channel or “decoherence”.
This channel is uniquely quantum-mechanical in its effects: it leaves the |0〉 and |1〉 pure
states unchangeed, and only affects the phase information in the quantum state:

ρ→ ρ′ = EPF(ρ) = (1− γ)ρ+ γZρZ.

You can show that it acts on the Bloch ball by squeezing it towards a cigar along the z-axis,
as in figure 7.

In many physical implementations phase flip, or decoherence, is the main source of noise,
mainly because |0〉 and |1〉 are realized as energy eigenstates of different energies. As in the
discussion of energy loss, the phase flip probability γ is an exponentially saturating function
of time,

γ ≈ 1− e−t/τdec ,
where τdec is the decoherence time of the system. The statement that phase flip noise
is the typically the main source of noise is simply the statement that τdec is typically the
shortest noise channel time scale. For instance, in many proposed physical realizations of
qubits, energy conservation often makes the amplitude damping and depolarizing processes
take place much more slowly than decoherence processes.

88

|1

|0

PFε

Figure 7: Action of the phase flip channel operation on the Bloch ball.

γ also typically grows with the size of the system, which is why large objects typically
act classically: phase decoherence projects them onto classical states. (In terms of the Bloch
ball, classical states correspond to the points just along the z-axis.)

General 1-qubit noise .
You can show ([NC] section 8.3.2) that the action of the most general noise on a single qubit

can be parameterized by 12 parameters. In the Bloch ball representation, if ρ = 1
2
(I +~r · ~X)

and ρ′ = 1
2
(I + ~r′ · ~X) = E(ρ), then ~r′ = O1DO2~r + ~c where Oi are independent rotation

matrices, D is a diagonal scaling matrix, and ~c is a constant translation vector.

8 Error correction for noisy channels

In this section we will discuss algorithms for correcting errors due to noise when sending
(qu)bits down a wire.

8.1 Classical majority voting code

We first start by reviewing the classical situation. For simplicity, consider a symmetric model
of moise in a 1-bit channel in which p is the probability of 0 flipping to 1 or the reverse. This
is modeled by the classical probability evolution matrix (206) with e = f = p. We want
to design a classical circuit which transmits the classical bit along this noisy channels, but
reduces the probability of a bit flip.

A simple such algorithm is the majority voting code, consisting of the steps:

1. Encode: Triple the the input, i.e. map “0” to “000” and “1” to “111”. We will call 000
“logical 0” and denote it by 0L; similarly 111 := 1L is logical 1. A reversible circuit
which does the encoding step is

L

x
x
x

x
0
0

x

2. Send: Send the encoded signal (3 bits for one) down the wire where noise flips bits with
probability p. We assume the noise acts independently on each bit:

89

x’’’

x
x
x

x’
x’’

3. Measure and correct: There are 8 possible outcomes once the noise has acted. Map
these back to logical 1 or 0 by “majority voting”

000 111
001 110
010 101
100 011

 −→


000 111
000 111
000 111
000 111

realized by the circuit

where “•” stands for an AND gate and “+” stands for an OR gate.

4. Decode: Send 0L → 0 and 1L → 1. In this case this just means we should read off any
one of the outputs.

Now we can compute the probability of an overall bit flip. Since p is the probability of
any of the three bits flipping in step 2, and since the probabilities are independent for each
bit, we get

number of flips 0 1 2 3
probability (1− p)3 3p(1− p)2 3p2(1− p) p3

Majority voting works (corrects the error) if there are only 0 or 1 bit flips; but it fails (returns
a flipped bit) if there were 2 or 3 bit flips during transmission. Thus, the probability for an
overall bit flip is the sum of the probabilities for 2 and 3 flips above, giving

p′ = 3p2(1− p) + p3 = 3p2 − 2p3.

The majority voting code is said to be effective when it reduces the overall bit-flip
probability, i.e. when p′ < p. By the last equation this means p has to satisfy 3p2 − 2p3 < p
which is true for p < pth = 1/2. So, as long as the error rate is less than the threshold
value, pth = 1/2, the majority voting code reduces the error rate.

Once a code is effective, it can clearly be reiterated to reduce the error rate by as much
as is desired. For example, one could triple the logical bits to get logical-logical bits, 0L →
0L0L0L := 0LL, and use majority voting on them to reduce the error rate even further to
p′′ ≈ 3(p′)2 ≈ 27p4 (when p� 1).

90

8.2 Shor’s code

We want to translate the majority voting code to the quantum context. There are some
obvious problems, though:

• Classical encoding involves copying the state. But the no cloning theorem say that this
is impossible in quantum mechanics.

• Classically, measuring the signal in order to correct it by majority voting did not
(in principle) introduce any new errors. But in quantum mechanics, measurement
irreducibly affects the qubits, potentially destroying, e.g., their entanglement with other
qubits.

• Classically the error (noise) on a single bit was parametrized by just two numbers (the
probabilities for 0 to flip to 1 and the probability for 1 to flip to 0). In quantum
mechanics, on the other hand, we have just seen that single qubit errors (noise) are
parameterized by twelve numbers. So there seems to be many more kinds of errors
that have to be corrected for.

In the rest of this section we will see how Peter Shor’s code (1994) overcomes all these
problems.

First, let’s review the no-cloning theorem, which states: There is no quantum circuit U
(UU † = I) which duplicates an arbitrary initial state. That is, the circuit that does

U
ψ

0

ψ

ψ

for all |ψ〉 does not exist.
Proof: Suppose such a U did exist. Then

U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉,
U(|φ〉 ⊗ |0〉) = |φ〉 ⊗ |φ〉,

for any two states |ψ〉 and |φ〉. Take the inner product of these two equations. The left side
gives

(〈φ|〈0|)U†U(|ψ〉|0〉) = (〈φ|〈0|)I(|ψ〉|0〉) = 〈φ|ψ〉〈0|0〉 = 〈φ|ψ〉,
while the right side is

(〈φ|〈φ|)(|ψ〉|ψ〉) = 〈φ|ψ〉〈φ|ψ〉.

Comparing left and right sides, we see that we must have 〈φ|ψ〉 = 0 or 1, which means that

either |φ〉 = |ψ〉 or |φ〉 ⊥ |ψ〉. But this is a contradiction, since |φ〉 and |ψ〉 were assumed

arbitrary.

But, this proof of the no-cloning theorem shows that we can clone orthogonal states. In
other words, there can exist a circuit that behaves like the one shown above, but only for a
basis of orthogonal states, |ψ〉 = |0〉 or |1〉. For example, one such circuit is

Φ
ψ ψ

0 ψ + 0

91

But if |ψ〉 = a|0〉+b|1〉, then the output is |Φ〉 = a|00〉+b|11〉, not (a|0〉+b|1〉)⊗(a|0〉+b|1〉).
Therefore, this circuit entangles the output bits, but does not clone them.

Shor’s insight was that error-correction could be accomplished using this kind of entan-
glement to encode qubits: “Fight [noise] entanglement with entanglement.”

There are still the two other problems: the effects of measurements, and the many kinds
of quantum noise. Let’s see how the measurement problem can be dealt with by taking a
simple toy model of quantum noise. In particular, assume that

E(|ψ〉) = (1− p)|ψ〉〈ψ|+ pX|ψ〉〈ψ|X,

i.e., that the only error operator is X, the bit flip, with probability p. (This is completely
unrealistic, but since it is similar to the classical noise case, it is a good toy problem to start
on.)

3-qubit bit-flip (X) code

Encode:

|0〉 → |0L〉 := |000〉,
|1〉 → |1L〉 := |111〉,

by entanglement:

L0
ψ

0
ψ

Thus, if |ψ〉 = a|0〉+ b|1〉, then |ψL〉 = a|000〉+ b|111〉.
Noise acts on the output (entangled) qubits separately. This means that the quantum

operator E acts on the 3 qubits independently:

E3(|ψL〉〈ψL|) = “E ⊗ E ⊗ E”(|ψL〉〈ψL|) (231)

:= (1− p)3|ψL〉〈ψL|
+ p(1− p)2

{
X1|ψL〉〈ψL|X1 +X2|ψL〉〈ψL|X2 +X3|ψL〉〈ψL|X3

}
+ p2(1− p)

{
X1X2|ψL〉〈ψL|X1X2 +X1X3|ψL〉〈ψL|X1X3

+X2X3|ψL〉〈ψL|X2X3

}
+ p3X1X2X3|ψL〉〈ψL|X1X2X3.

The first line below (231) expresses the (1 − p)3 probability of no bit flips, the next line
expresses the result of a single bit flipping, the next gives 2 bit flips, and the last the
possibility of all three bits flipping. Here I have used a notation that will be very useful in
what follows:

X1 := X ⊗ I ⊗ I, X2 := I ⊗X ⊗ I, X3 := I ⊗ I ⊗X.

More generally, an expression like XiZjXkY` will mean the tensor product of 1-qubit opera-
tors with X acting on the ith qubit, Z on the jth, X on the kth, Y on the `th, and I on all
the rest.

92

Exercise 8.1 Write out the 8 × 8 density matrix E3(|ψL〉〈ψL|) in the computational basis
{|000〉, |001〉, |010〉, |100〉, |110〉, |101〉, |011〉, |111〉} if |ψL〉 = a|000〉+ b|111〉.

The next step is to correct for the errors. Note that our original state |ψ〉 lived in a 2-
dimensional (1 qubit) Hilbert space H. |ψL〉 lives in an 8-dimensional (3 qubit) Hilbert space
H3, but |ψL〉 = a|000〉+b|111〉 is always in the code subspaceHc spanned by {|000〉, |111〉}.
The central observation needed for correcting errors is that typical errors move |ψL〉 out of
the code subspace Hc into the larger H3 space.

For example, say that noise flipped the first bit: |ψL〉 → X1|ψL〉. (By (231), this occurs
with probability p(1− p)2.) If |ψ〉 = a|0〉+ b|1〉, so that |ψL〉 = a|000〉+ b|111〉, then

X1|ψL〉 = aX1|000〉+ bX1|111〉 = a|100〉+ b|011〉 /∈ Hc.

In fact, this state is orthogonal to Hc. Similarly, X2|ψL〉 = a|010〉 + b|101〉 and X3|ψL〉 =
a|001〉+ b|011〉 are also orthogonal to Hc, and to each other. Because the errors are orthogo-
nal, it is easy to cook up a measurement that detects them without modifying the un-errored
state.

In this case, one way to do it is to measure the operators Z1Z2 and Z2Z3. The set of
operators one measures to identify an error is called the error syndrome. To see why this
error syndrome does the job, first consider

Z1Z2 = Z ⊗ Z ⊗ I =

(
1
−1

)
⊗
(

1
−1

)
⊗
(

1
1

)
,

and is easily seen to have eigenvalues ±1. Furthermore, Hc, X1Hc, X2Hc, and X3Hc are all
eigenspaces of Z1Z2:

Z1Z2|ψL〉 = Z1Z2 (a|000〉+ b|111〉) = a(+)(+)|000〉+ b(−)(−)|111〉 = +|ψL〉,
Z1Z2(X1|ψL〉) = Z1Z2 (a|100〉+ b|011〉) = a(−)(+)|100〉+ b(+)(−)|011〉 = −X1|ψL〉,
Z1Z2(X2|ψL〉) = Z1Z2 (a|010〉+ b|101〉) = a(+)(−)|010〉+ b(−)(+)|101〉 = −X2|ψL〉,
Z1Z2(X3|ψL〉) = Z1Z2 (a|001〉+ b|110〉) = a(+)(+)|001〉+ b(−)(−)|110〉 = +X3|ψL〉.

Similarly for Z2Z3 which gives

Z2Z3|ψL〉 = +|ψL〉,
Z2Z3(X1|ψL〉) = +X1|ψL〉,
Z2Z3(X2|ψL〉) = −X2|ψL〉,
Z2Z3(X3|ψL〉) = −X3|ψL〉.

This can be summarized in the error syndrome table:

Error op. Error syndrome
elements Z1Z2 Z2Z3

I + +
X1 − +
X2 − −
X3 + −

93

where the rows are the errors (I means “no error”), and the columns are the error syndrome
operators we measure, and the entries are the ±1 eigenvalues on the code space Hc acted on
by the error operation element.

The net result of measuring {Z1Z2, Z2Z3} will be to get two numbers, {±1,±1} and to
“collapse the wave function”, i.e., to project the state onto the Z1Z2 and Z2Z3 eigenspace
with those eigenvalues. But since the errors Xi|ψL〉 and |ψL〉 itself are already in Z1Z2 and
Z2Z3 eigenspaces, they are not changed by the projection.

So, the procedure for correcting the errors is clear:

(1) Measure {Z1Z2, Z2Z3}.

(2a) If {Z1Z2, Z2Z3} = {+,+}, do nothing: |ψL〉 → |ψL〉.

(2b) If {Z1Z2, Z2Z3} = {+,−}, apply X3: X3|ψL〉 → |ψL〉.

(2c) If {Z1Z2, Z2Z3} = {−,+}, apply X1: X1|ψL〉 → |ψL〉.

(2d) If {Z1Z2, Z2Z3} = {−,−}, apply X2: X2|ψL〉 → |ψL〉.

If only a single qubit has flipped, we see that we recover the original state in this way.
Note that if two quibits flipped, then we do not recover the original state, and error

correction fails. For example, say the noise takes |ψL〉 → X1X2|ψL〉 = a|110〉+ b|001〉. This
is still a {Z1Z2, Z2Z3} eigenstate, but with eigenvalues {+,−}. So it is mistaken for a single
bit flip X3 error, and our error-correction procedure gives X1X2|ψL〉 → X1X2X3|ψL〉 6= |ψL〉.
This is just like classical majority voting: it fails if 2 or more bits are flipped by the noise.

Therefore, just as in the classical case, the net probability of error after this correction
procedure is p′ = 3p2(1 − p) + p3 = 2p2 − 3p3, and therefore the correction is effective if
p′ < p, which occurs for p < 1/2.

We now want to represent this quantum error-correction algorithm as a quantum circuit.
Also, real measurements are not ideal, so even though Xi|ψl〉 are in ZjZk eigenspaces, a real
quantum measurement (as opposed to an ideal or non-destructive one) will generally change
Xi|ψL〉. (This is a statement not about quantum mechanics, but about human technological
imperfection.) Thus we would like to modify our error-correction procedure so we do not
have to do the measurements directly on our signal qubits. This is easily taken care of using
ancilla qubits:

0
ψ

0

ψ2

ψ1

ψ3

0
0 A1

A2

UΑ1 2Α

The jagged line in this circuit indicates where the noise acts. The two additional bottom
lines represent the ancilla qubits. The dashed lines mean “measure the ancilla qubits in the
computational basis” and the dashed arrow indicates that the error-correcting U gate that
is applied depends on the result of that measuremet. Finally, I have indicated states |ψ1,2,3〉
after the noise is just for refence pruposes: the state of the 3 signal qubits is really entangled,
so is not a tensor product of three separate 1-qubit states.

94

This circuit works as follows, as you can easily read off:
If |ψ1ψ2〉 = |00〉 or |11〉, then we measure |A1〉 = |0〉 and the Z1Z2 eigenvalue is +1.
If |ψ1ψ2〉 = |01〉 or |10〉, then we measure |A1〉 = |1〉 and the Z1Z2 eigenvalue is −1.
If |ψ2ψ3〉 = |00〉 or |11〉, then we measure |A2〉 = |0〉 and the Z2Z3 eigenvalue is +1.
If |ψ2ψ3〉 = |01〉 or |10〉, then we measure |A2〉 = |1〉 and the Z2Z3 eigenvalue is −1.
Therefore, the error-correcting gate should be

UA1A2 =


I if A1 = 0, A2 = 0,

X1 if A1 = 1, A2 = 0,
X2 if A1 = 1, A2 = 1,
X3 if A1 = 0, A2 = 1.

As the following circuit makes obvious, |ψ〉 (the input) could be entangled with any
number of other qubits, and this entanglement would not be affected by the error-correction
procedure. So, for example, the circuit for error-correcting bit-flip errors in two entangled
qubits is simply the double of the 1-qubit circuit:

U0
0

0
0

ψ

U

Exercise 8.2 Show that if p′1 is the probability that the 1-qubit error-correction circuit fails
to correct bit-flip noise errors, then the probability for the above 2-qubit error-correction
circuit to fail is p′2 = 2p′1 − (p′1)

2.

3-qubit phase-flip (Z) code

So far all this was only for correcting bit-flip channel errors. We have seen that there are
many other kinds of quantum noise. For example, there is also the phase-flip channel (error
operator = Z) which had no classical analog. Let’s see how to correct for that.

So suppose E(|ψ〉) = (1 − p)|ψ〉〈ψ| + pZ|ψ〉〈ψ|Z. Recall that Z =
(
1 0
0 −1

)
flips the sign

of |1〉. How do we correct for this error? Recall X = HZH where H =
(
1 1
1 −1

)
/
√

2 is the
Hadamard gate. Define the |±〉 basis by

|±〉 :=
1√
2

(|0〉 ± |1〉) ,

and note that {|±〉} is the X eigenbasis, and that Z acts on it as

Z|+〉 = |−〉, Z|−〉 = |+〉.

95

In other words, Z acts in the {|±〉} basis like X does in the {|0〉, |1〉} basis. This makes it
clear how to proceed.

Encode:

|0〉 → |0L〉 := |+ ++〉,
|1〉 → |1L〉 := | − −−〉,

by entanglement:

H

0
ψ

0
ψL

H

H

Thus, if |ψ〉 = a|0〉+ b|1〉, then |ψL〉 = a|+ ++〉+ b| − −−〉.
Decode: after transmission, to switch back to the {|000〉, |111〉} basis of Hc, just act with

Hadamard gates on the three qubits. The net effect of this is to sandwich the noise between
two Hadamard gates (on each qubit), thus effectively changing the Zi error operations to
Xi = HZiH. This has simply “rotated” the error from phase-flips to bit-flips. So the rest of
the error correction is the same as in the bit-flip case:

Measure error syndrome: {Z1Z2, Z2Z3} just as before.
Correct single errors: again in the same way by applying Xi to the ith bit flip.
The complete circuit thus looks like

U0
ψ

0

0
0

H

H

H H

H

H

~{I,X }i

Note that we can make equivalent circuits by moving the Hadamard gates around using the
identities H2 = I, HXH = Z, as well as the 2-qubit identity

=
H

H

H

H

Exercise 8.3 Use the above identities to show that the phase-flip error-correcting circuit is
equivalent to

+

0
ψ

0

H

H

H

H

H

H

H

H

U
i~{I,Z }

+

96

9-qubit X and Z code (Shor code)

Now we can finally describe Shor’s code: a simple code that simultaneously protects against
bit-flip and phase-flip errors. We will then see the pleasant surprise of quantum error cor-
rection: a code that corrects bit-flip (X) and phase-flip (Z) errors, actually automatically
corrects arbitrary single-qubit quantum errors!

Encode: in 2 steps. First, encode

|0〉 → |+ ++〉,
|1〉 → | − −−〉,

then encode each of these three qubits by

|+〉 → 1√
2

(|000〉+ |111〉) ,

|−〉 → 1√
2

(|000〉 − |111〉) .

The net result is a 9-qubit encoding:

|0〉 → |0L〉 :=
1

2
√

2
(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) ,

|1〉 → |1L〉 :=
1

2
√

2
(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) .

This is accomplished by the circuit

ψ
0
0
0
0
0
0
0
0

H

H

H

ψL

So we are encoding 1 qubit ∈ H in a 2-dimensional code subspace Hc ⊂ H9 of a 29 = 512-
dimensional space! So there should be plenty of room for the 18 types of noise (9 X’s and
9 Z’s) we are interested in correcting to appear in orthogonal subspaces of H9, and to find
error syndromes with these subspaces as eigenspaces.

The bit-flip errors: X1, X2, . . . , X9 are easy to fix. For example,

X5|0L〉 =
1

2
√

2
(|000〉+ |111〉) (|010〉+ |101〉) (|000〉+ |111〉) ,

X5|1L〉 =
1

2
√

2
(|000〉 − |111〉) (|010〉 − |101〉) (|000〉 − |111〉) ,

so is an eigenstate of Z4Z5 and Z5Z6, with

Z4Z5(X5|ψL〉) = −X5|ψL〉,
Z5Z6(X5|ψL〉) = −X5|ψL〉.

97

So if we measure Z4Z5 = Z5Z6 = −1, we know that the X5 bit-flip error occured, and can
correct it. In general, measuring {Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9} will detect all single
bit-flip errors.

The phase-flip errors: Z1, Z2, . . . , Z9 are actually easier to fix in this encoding. Notice
that the phase-flips {Z1, Z2, Z3} all have the same effect on Hc, e.g.,

Z1|0L〉 =
1

2
√

2
(|000〉 − |111〉) (|000〉+ |111〉) (|000〉+ |111〉) ,

Z2|0L〉 =
1

2
√

2
(|000〉 − |111〉) (|000〉+ |111〉) (|000〉+ |111〉) .

Thus we only have to detect a phase flip on bits 1–3, 4–6, or 7–9. Just as X1X2 and X2X3

would do the job for bits 1–3, so {X1X2X3X4X5X6, X4X5X6X7X8X9} are sufficient to detect
all single phase-flips.

Thus, the set

{Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9}

are the error syndrome to tell us if a single bit-flip or phase-flip error has occurred. Measuring
these operators will not disturb the state because all single-qubit bit-flip or phase-flip errors
are eigenstates of all these operators. This can be checked explicitly. Or, since it is already
clear that bit-flips are eigenstates of the ZiZj’s and phase-flips of the

∏
iXi, we just have

to check that they are also eigenstates of each other. A necessary condition for this is
that the Z2 and X6 operators commute, so that they have simultaneous eigenvalues. The
commutators indeed vanish, since

[Z1Z2, X1X2] = Z1X1Z2X2 −X1Z1X2Z2 = (iY1)(iY2)− (−iY1)(−iY2) = 0,

and similarly for the others.

98

So, our error-correction syndrome table is:

Error op. Error syndrome
elements Z1Z2 Z2Z3 Z4Z5 Z5Z6 Z7Z8 Z8Z9 X1 · · ·X6 X4 · · ·X9

I

X1 −
X2 − −
X3 −
X4 −
X5 − −
X6 −
X7 −
X8 − −
X9 −

Z1, Z2, Z3 −
Z4, Z5, Z6 − −
Z7, Z8, Z9 −
iY1 = X1Z1 − −
iY2 = X2Z2 − − −
iY3 = X3Z3 − −
iY4 = X4Z4 − − −
iY5 = X5Z5 − − − −
iY6 = X6Z6 − − −
iY7 = X7Z7 − −
iY8 = X8Z8 − − −
iY9 = X9Z9 − −

All the eigenvalues are ±1; we only show the ones which are −1 for clarity. (The last 9 lines
with the Yi’s will be discussed below).

The circuit for making the measurement and correcting the errors is not hard to find.

Exercise 8.4 Show that the following circuit

a

ψ ψ

+

gives the output shown with |a〉 = |±〉 if |ψ〉 ∈
{

1√
2
(|000〉 ± |111〉), 1√

2
(|001〉 ± |110〉),

1√
2
(|010〉 ± |101〉), 1√

2
(|100〉 ± |011〉),

}
, where the plus or minus signs are correlated.

Using the result of the above exercize, it is straight forward to check that the circuit

99

U

H
H

0
0
0
0
0
0

+
+

1
2
3
4
5
6
7
8
9

does the job, where U means “act with the error operator determined by the values of the
measurements, as given by the table on the previous page.”

The Y errors: So far we have shown that we can correct for X and Z errors. But there
are many other errors. We will now show that Shor’s code also automatically corrects for Y
errors.

Recall that iY = ZX, so up to an overall phase a Y error is just an X error followed
by a Z error (on the same qubit!). Our error-correcting code worked for Xj and Zj er-
rors because the XjHc and ZjHc subspaces were all eigenspaces of the error syndromes
{Z1Z2, . . . , X4 · · ·X9} := {Fn} operators:

FnXjHc = ±XjHc and FnZjHc = ±ZjHc. (232)

Furthermore, it is also true that

FnXj = ±XjFn and FnZj = ±ZjFn (233)

as operator equations (i.e., acting on any state). (In fact, since FnHc = +Hc, (232) follows
from (233).) Equation (233) is true by virtue of the algebra of Pauli matrices. In particular,
it follows from the easily checked operator relations XjZj = −ZjXj, XiXj = XjXi, ZiZj =
ZjZi for any i, j, and XiZj = ZjXi for i 6= j.

Now it is easy to prove that YjHc are also eigenspaces of the syndrome operators Fn by
using (233):

FnYjHc = iFnZjXjHc = ±iZjXjFnHc = ±iZjXjHc = ±YjHc.

The resulting error syndrome table for the Yj is shown on page 58.

Exercise 8.5 Consider the state |χ〉 := X1Z1|0L〉 = 1
2
√
2

(|100〉 − |011〉) (|000〉+ |111〉) (|000〉+ |111〉).
(I.e., this state has suffered a combined bit- and phase-flip error on qubit 1.) Show that,
indeed, Z1Z2|χ〉 = −|χ〉, Z2Z3|χ〉 = |χ〉, and X1X2X3X4X5X6|χ〉 = −|χ〉.

General 1-qubit errors: We now show that Shor’s code actually corrects all possible 1-
qubit errors. Recall that the general error is

E(|ψ〉) =
∑
k

Ek|ψ〉〈ψ|E†k such that
∑
k

E†kEk = I,

100

which we saw could be interpreted as saying that the error |ψ〉 → Ek|ψ〉 occurs with proba-
bility pk = 〈ψ|E†kEk|ψ〉. The most general error operator on a single qubit is a 2× 2 matrix,
so can be written as a linear combination of {I,X, Y, Z}:

Ek = ek0I + ekxX + ekyY + ekzZ

where {ek0, ekx, eky, ekz} are complex numbers. That means that the most general possible
error is a linear combination of the “errors” I, X, Z, and iY = XZ. (The I “error” is
actually no error at all.)

Say qubit 1 in the state |ψL〉 in the Shor encoding experiences the general error (Ek)1 =
Ek ⊗ I⊗8. Then measuring the error syndrome operators {Fn} = {Z1Z2, X1 · · ·X6, . . .} will
project the total state

(Ek)1|ψL〉 = ek0|ψL〉+ ekxX1|ψL〉+ ekyY1|ψL〉+ ekzZ1|ψL〉

onto the orthogonal eigenspaces of the measured Fn results. For example, say we measure
Z1Z2 = −1 and X1X2 · · ·X6 = −1, and all the rest of the Fn = +1. This is the error
syndrome for a Y1 error. The eigenspace of this measurement is Y1Hc, which is orthogonal
to all the other errors (because they are Fn eigenspaces), and in particular to Hc, X1Hc, and
Z1Hc. Thus, after the measurement, the total state will be projected onto Y1Hc:

(Ek)1|ψL〉 →
PY1Hc(Ek)1|ψL〉
||PY1Hc(Ek)1|ψL〉||

=
ekyY1|ψL〉
||ekyY1|ψL〉||

= Y1|ψL〉,

Then when we apply the error correction, Y1, to this state according to the error-syndrome
table on page 99 we get

Y1(Y1|ψL〉) = Y 2
1 |ψL〉 = |ψL〉,

and we have corrected the error! It should be clear that there was nothing special about
this example: precisely the same computation works for every error syndrome eigenvalues
measured. This consitutes a proof that Shor’s code corrects any 1-qubit error.

8.3 Generalizations

Though Shor’s code does the job, it is useful to generalize and abstract a method for de-
scribing error-correcting codes efficiently.

What is the smallest possible code?

The number of qubits used to do the encoding, n, is used to label quantum codes. For
example, Shor’s code is a 9-qubit code. We want to know how many qubits n are necessary
to protect against 1-qubit errors.

To correct arbitrary errors we need enough “room” in the total Hilbert space so that all
errors will be in orthogonal subspaces. Say we have encoded 1 qubit with n qubits. Then
dimHc = 2 and dimH = 2n. For example, for the Shor code, n = 9, so dimH = 29 = 512 is
the total encoding Hilbert space, while the logical subspace, or quantum code subspace,
has dimHc = 2.

101

There are 3n possible 1-qubit errors: X, Y , Z for each of the n encoding qubits. There
is also the possibility of “no error”: the I operator on all qubits. Thus there are a total of
1 + 3n independent error operators, En.

We want to choose Hc ⊂ H such that EaHc are orthogonal for all a. Thus we must have
(dimHc) · (#Ea) ≤ dimH, which implies 2(1 + 3n) ≤ 2n, or

n ≥ 5.

Thus the minimum number of quits needed is 5. Such a code has been found, and is described
in the text.

(Note that the same argument works for classical linear codes, except there is only one
independent error—bit flip—instead of 3, giving 2 · (1 + n) ≤ 2n which implies n ≥ 3, with
n = 3 the simple majority-voting code.)

It is easy to extend the above bound to more general codes. Say we encoded k qubits
with n qubits, so dimHc = 2k and dimH = 2n, and we want a code to correct al errors on
up to t qubits simultaneously. Then, the number of independent errors is

N(t) =
t∑

j=0

3j
(
n

j

)
,

since there are
(
n
j

)
ways to choose j qubits out of n that are affected by errors, and on each

those j qubits there are 3 independent errors (X, Y , or Z). So, for all errors to be orthogonal
in H, we need (dimHc) ·N(t) ≤ dimH, which implies

t∑
j=0

3j
(
n

j

)
≤ 2n−k.

This is called the quantum Hamming bound.
The derivation of the quantum Hamming bound assumed the code was nondegenerate

(which we won’t define here; see [NC]). It turns out, though, that you can’t defeat the
Hamming bound using degenerate codes. Indeed, one can prove the quantum Singelton
bound,

n ≥ k + 2(d− 1),

which is true for all codes. Here we have introduced

d := 2t+ 1,

which is called the code distance.
One uses the same notation for quantum codes as one does for classical linear codes.

That is, we speak of an “[n, k, d] code” when it corrects (d − 1)/2 errors on k qubits by
encoding them with n qubits. So, for example, Shor’s code is a [9,1,3] code.

Conditions for error recovery

Theorems 10.1 and 10.2 of [NC] characterize when error recovery is possible. They are
equivalent to the following

102

Theorem: Given a set of linearly independent error operators {Ea} and an orthonormal
basis {|i〉} of the code space Hc, then the Ea can be corrected if and only if

〈j|E†aEb|i〉 = Cabδij (234)

for all a, b, i, j where the Cab are some complex numbers independent of i and j. (Note that
C∗ab = Cba.)

The proof of this theorem is interesting because it is constructive: it actually gives
a method for correcting errors, and gives some physical insight into how error correction
works. It basically shows how, given (234), one can choose a basis for the error operators
which diagonalizes Cab, and in this basis how one can unambiguously diagnose the errors
by performing orthogonal measurements. Arbitrary linear combinations of the errors Ea are
also automatically recovered by the same arguments that we used for the Shor code.

Since the proof of this theorem is really just a formalization of what we did to check that
the Shor code worked, we will not reproduce the details here; see the discussion in [NC] if
you are interested. However a couple of physical points are made clearer in the general proof
which were not so clear in our discussion of the Shor code:

1. In the proof of the theorem, the error recovery is modelled as a general quantum operation.
In particular, no mention is made of whether the ancilla qubits were actually measured
or not. Thus, the measurement step is not necessary. But the ancilla are necessary.

2. This gives the following general picture of how error correction works: Noise is entan-
glement with the environment, and increases the entropy of the system. We can’t
decrease the total entropy (eliminate the noise), but error recovery instead shifts it to
entanglement of the environment with the ancilla qubits. To repeat the procedure, you
have to “dump” the ancilla system, i.e., reset it to a starting state, |0A〉, unentangled
with computer or environment. This is summarized in the figure below.

entangled

0A 0A

={E }nε
ε n={R }
Recovery

Noise

TrashAncilla

Computer

Environment

corrected
state

entangled

8.4 The toric code

Under construction

9 Fault-tolerant quantum computation

So far we have only discussed how to reduce noise in the transmission of qubits. But how
about noise in the gates, etc., used in a quantum computer and in the noise-correction algo-
rithm itself? In the words of the inventors of fault-tolerant quantum computation (Mosca,
Jozsa, Steane, Ekert):

103

At this point the reader still should not feel altogether happy about building
this house of cards. Although we have introduced corrective measures, what if
they themselves are faulty, as they must be in any real system?

It turns out (see the last sections of chapter 10 of [NC]) that analogs of the noisy channel
error-correction idea described in the last section can be applied at every stage of a quantum
computation: bit preparation, ancilla measurement, quantum gates, as wall as simple qubit
propagation. The net result is that if the sources of noise in all these steps is (1) sufficiently
independent, and (2) sufficiently small (less than some finite threshold), then the error rate
can be reduced arbitrarily at a cost of increasing the total number of bits and gates by a
factor at most polynomial in the number of (non-error-corrected) gates. (This is the threshold
theorem quoted on page 73, above.)

The final picture of quantum computation that emerges is summed up in metaphoric
language by MJSE:

The “realistic” quantum computer looks very different from the idealized
noise-free one. The latter is a silent shadowy beast at which we must never look
until it has finished its computations, whereas the former is a bulky thing at
which we “stare” all the time, via our error-detecting devices, yet in such a way
as to leave unshackled the shadowy logical machine lurking within it.

104

Part IV

Topological Quantum Computation
Actually, there is a completely different strategy to defeating noise in quantum computers:
instead of correcting for it, try to reduce it to insubstantial levels from the very beginning.
Such a strategy12 is pursued in topological quantum computation, which tries to use certain
special quantum systems in which quantum entanglement is very robust against noise.

The basic idea is to find a system in which some of the quantum information is carried by
degrees of freedom which are insensitive to localized perturbations of the system, but instead
only care about global (large distance scale) configurations of the system. Such degrees of
freedom are called topological degrees of freedom. An intuitive example is the number of
handles (the “genus”) of a closed 2-dimensional surface: local deformations of the surface
will change its exact shape, but not change the overall number of handles on the surface
unless something drastic (discontinuous, like tearing the surface) happens.

Remarkably, systems with such topological degrees of freedom do exist in nature. In
particular, at low temperatures and energies and at long distances, such a topological phase
of matter is found in the fractional quantum Hall effect (at certain specific values of the
magnetic field).

The low-lying excitations of this system, its quasiparticles, are constrained to move in
two spatial dimensions, and so the paths of quasiparticles can be braided. This means that
the possible ways they can go around one another fall into discrete topological classes. For
example, if two quasiparticles start out in a specific configuration, and end up in the same
configuration, in between they could get there in an infinite number of topologically distinct
ways: (0) neither particle moves at all; (1) particle 2 stays put, but particle 1 moves around
it once in a counterclockwise manner; (2) particle 2 stays put, but particle 1 moves around
it twice in a counterclockwise manner; . . .; (-1) particle 2 stays put, but particle 1 moves
around it once in a clockwise manner; . . .; see the figure.

(−1) (1) (2)(0)

Figure 8: Different braidings of two quasiparticles in the plane.

Now, the quasiparticles are identical particles, and just as with identical particles in three
dimensions, their wavefunctions have definite statistics under interchange of the particles.
For example, identical fermions, like electrons, in three dimensions, obey Fermi statistics,
which means that under interchange of a pair of electrons, the state of the whole system
gains a minus sign. This phase of the wave function under interchange is an example of

12First proposed by A. Kitaev, Ann. Phys. (NY) 303 (2003) 2.

105

a topologically-protected aspect of the quantum evolution of the system. Unfortunately,
this simple phase can’t be used to do any interesting quantum computations. However, the
statistics of two-dimensional systems is potentially much richer, because now there is not
just interchange of identical quasiparticles, but there is also the topological class of the path
along which the interchange takes place, as illustrated with the braidings above.

In general, suppose that the quasiparticles come in a variety of different states |a〉,
a = 1, . . . , s (analogous to the spins states of electrons) which describe a collection of quasi-
particles at different spatial positions in the plane. Then interchange of two such quasipar-
ticles can do more than simply change the phase of the wavefunction. It may also rotate the
“spin” basis vectors |a〉 into one another,

|a〉 →
∑
b

Rab|b〉,

where the unitary matrix R depends on the specific braiding the quasiparticles undergo
to perform the exchange. The idea is to realize quantum gates using these braid matrices
R. Since they only depend on the topological class of the quasiparticle exchange, they are
protected from local sources of noise (which can be thought of semiclassically as something
like “jiggling” of the quasiparticle paths). In the case of nonabelian braid statistics, which
means that there are braid matrices R and S corresponding to different braidings such that
RS 6= SR, then you can imagine building up a large set of gates by successive braidings.

For example, the ν = 12/5 quantum Hall state is thought to give a realization of such
nonabelian statistics. Furthermore, the braid matrices can be realized as rotations by mul-
tiples of π/5 (along with phases) around various directions in the Hilbert space of multiple
quasiparticles. These braid matrices do not form a finite group, but are dense in the set of
all unitary transformations, so can in principle be used to approximate any desired unitary
transformation to any given accuracy.

This appealing idea has garnered much theoretical attention. As yet, however, physical
realizations of such systems are beyond our technological capabilities to create. For example,
the ν = 12/5 quantum Hall system described above is far from being a practical basis for
quantum computation. The ν = 12/5 state is very hard to reliably observe, even at very low
temperatures (10−2 K), let alone manipulate. Furthermore, it is not even clear that it really
does have nonabelian braid statistics: this has yet to be confirmed experimentally. On the
other hand, evidence of the quantum Hall effect (though not yet of the fractional quantum
Hall effect) has recently been observed at room temperature in graphene (K.S. Novoselov
et. al., Science 315 (2007) 1379). It is an active area of research to locate suitable systems
with nonabelian braid statistics and braid matrices which are dense in the set of unitary
matrices. Only time will tell whether this interesting idea will give rise to practical quantum
computers.

106

	Qubit quantum mechanics
	Basic computations in quantum mechanics
	Single qubit gates and Pauli matrices
	Tensor products
	Entanglement

	I Quantum Circuits
	Simple circuits
	The no-cloning theorem, controlled-NOT and related gates
	Quantum teleportation and encryption

	Some basic quantum algorithms
	Function gates
	Deutsch-Jozsa algorithm
	Grover's algorithm

	II Cryptosystems and Shor's Algorithm
	Factorization, public key cryptosystems, and the order function
	Factorization
	RSA cryptosystem
	The order function and factorization
	Appendix: Modular arithmetic

	Quantum Fourier transform
	Shor's quantum algorithm for the order function
	Shor's algorithm
	Example: quantum computation of ord(10,21).
	Appendix: Rational approximant algorithms
	Appendix: The behavior of Shor's algorithm

	III Noise and Error Correction
	The need for quantum error correction
	Models of noise
	Classical noise
	Density matrices
	Quantum operations

	Error correction for noisy channels
	Classical majority voting code
	Shor's code
	Generalizations
	The toric code

	Fault-tolerant quantum computation

	IV Topological Quantum Computation

