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From Chbits to Qbits: Teaching computer scientists quantum mechanics
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A strategy is suggested for teaching mathematically literate students, with no background in physics,
just enough quantum mechanics for them to understand and develop algorithms in quantum
computation and quantum information theory. Although the article as a whole addresses teachers of
physics well versed in quantum mechanics, the central pedagogical development is addressed
directly to computer scientists and mathematicians, with only occasional asides to their teacher.
Physicists uninterested in quantum pedagogy may be anjasétitated by some of the views of
standard quantum mechanics that arise naturally from this unorthodox perspectge3 Gmerican
Association of Physics Teachers.
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. COMPUTER SCIENCE AND QUANTUM to realize—is an extremely simple example of a physical
MECHANICS system. It is discrete, not continuous. It is made out of a
finite number of units, each of which is the simplest possible
kind of quantum mechanical system, a 2-state system, whose
possible behavior is highly constrained and easily analyzed.
There is a new audience for the teaching of quantum meMuch of the analytical complexity of learning quantum me-
chanics whose background and needs require a new style ehanics is connected to mastering the description of continu-
quantum pedagogy. The audience consists of computer sgus (infinite-statg¢ systems in (3 1)-dimensional space-
entists. Compared with the usual students in an introductorime. By restricting attention to discrete transformations
quantum mechanics course, they are mathematically sophigeting on collections of 2-state systems, one can avoid much
ticated, but are often ignorant of and uninterested in physicssuffering(and lose much wisdom, none of it—at least at this
They want to understand the applications of quantum mestage of the art—relevant to the theory of quantum compu-
chanics during the past dozen years to information processation)
ing, and their focus is exclusively on algorithrtsoftware, Second, the most difficult part of learning quantum me-
not engineeringhardware. chanics is to get a good feeling for how the abstract formal-
Although the obstacles to quantum computers becoming ssm can be applied to actual phenomena in the laboratory.
viable technology are formidable, the profound conse-Such applications almost invariably involve formulating
quences of quantum mechanics for the theory of computationversimplified abstract models of the real phenomena, to
discovered during the past decade ought to be part of thehich the quantum formalism can effectively be applied. The
intellectual equipment of every computer scientist, if onlybest physicists have an extraordinary intuition for what fea-
because it provides dramatic proof that the abstract analysisires of the actual phenomena are essential and must be rep-
of computation cannot be divorced from the physical meansesented in the abstract model, and what features are inessen-
available for its execution. Future computer scientists oughtial and can be ignored. It takes years to develop such
to learn quantum mechanics. intuition. Some never do. The theory of quantum computa-
But how much quantum mechanics? In December 2001 tion, however, is only concerned with the abstract model—
was at a conference on quantum computation and informahe easy part of the problem.
tion at the Institute for Theoretical Physics in Santa Barbara. Third, to understand how touild a quantum computer, or
At lunch one day | remarked to the Director of the ITP that | to study what physical systems are promising candidates for
spent the first four or five lectures of my coursm quantum  realizing such a device, you must indeed have many years of
computation teaching the necessary gquantum mechanics experience in quantum mechanics and its applications under
the computer scientists in the class. His response was thgour belt. But if you only want to know what such a device
any application of qguantum mechanics that could be taughit capable of doing in principle, then there is no reason to get
after only a four hour introduction to the subject could notinvolved in the really difficult physics of the subject. The
have serious intellectual content. After all, he remarked, itsame holds for ordinarffclassical”) computers: one can be
takes any physicist years to develop a feeling for quantuna masterful practitioner of computer science without having
mechanics. the foggiest notion of what a transistor is, not to mention
It's a good point. Nevertheless, it is a fact that computerhow it works.
scientists and mathematicians with no background in physics So although the approach to quantum mechanics for com-
have been able quickly to learn enough quantum mechanigauter scientists sketched below is focused and limited in
to understand and contribute importantly to the theory ofscope, it is neither oversimplified nor incomplete, for the
guantum computation, even though quantum computation respecial task for which it is designe(There is, however, an
peatedly exploits the most notoriously paradoxical featuressolated subset of quantum-computational theory called adia-
of the subject. There are three main reasons for this: batic quantum computation that uses the quantum system
First, a quantum computer—or, more accurately, the abmore like an analogue than a digital computer, and does re-
stract quantum computer that one hopes some day to be ald@ire a somewhat broader view of quantum theory.

These “bras” and “kets"—they’re just vectors!
—Newly enlightened computer scientfist
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[I. CLASSICAL BITS |19)6=1010012%=|0)|1)|0)|0)|1)|1)
The first step in teaching quantum mechanics to computer =10)®|1)®|0)®|0)®|1)®|1). (7)

scientists is to reformulate the language of conventional pq¢ the tensor product is a convenient and highly appro-
(classical computation in an unorthodox manner that intro- yiate \way to represent multi-Chit states becomes clear if one
ducgs much of the quantum formalism in an entirely fam"'arexpands the vectors representing each Chit as column vec-
setting tors

To begin, we need a term for a physical system that can™ '
exist in two unambiguously distinguishable states, which are 0 1 1 0 g
used to represent 0 and 1. Often such a system is caldéd a |0) 0/’ 1) 1) (8)
but this can obscure the impqrtant distinction between theI'he corresponding column vectors for tensor products are
abstract bi{0 or 1) and the physical system used to represent P 9 P

it. If one could establish a nomenclature for the field at this YoZo

late date, | would argue for the term Cbit for a classical Yol Zo VoZi

physical system used to represent a bit, in parallel with the ( )( ) , 9
term Qbit for its quantum generalization. Unfortunately, the Yotz Y1Zo

orthographically preposterous terigubit currently holds Y121

sway for the quantum systetwhile bit is used indiscrimi- XoYoZo

nately for both the classical system and the abstract bit. Be- XoV7

cause clear distinctions between bits, Cbits, and Qbits are 0YoZ1

crucial in the exposition that follows, | shall use this unfash- XoY12o

ionable terminology. It is inspired by Paul Dirac’s early use (Xo) YO)(Zo) XoY1Z1 (10
of c-numberand g-numberto describe classical variables X1/\y1/\z1 - X1Yo0Zo |’

and their generalizations to quantum-mechanical operators. X1YoZ1
(“Cbit” and “Qbit” are preferable to “c-bit” and “g-bit,” X1Y1Zo
because the terms themselves often appear in hyphenated
constructions. X1Y121

It can be fruitful, even on the strictly classical level, to etc.
represent the two states of a Chit by a pair of orthonormal Thus, for example, the 8-dimensional column vector rep-
2-vectors, denoted by the symbols resenting 5)5 is given by

o) 1). o)

This notation for vectors also goes back to Diré€or rea-

sons too silly to go into, he called such vectkeds a termi-

nology that has survived to the present glay. o\/1\/0
To do nontrivial computation requires more than one Cbit.  |5)3=[101)=|1)|0)|1)= ( 1)(0) ( 1) =

It is convenient(and, as we shall see in a moment, even

natura) to represent the four states of two Cbits as four or-

thogonal vectors in four dimensions, formed by the tensor

products of two such pairs:

|0)®[0) 0)®[1) 11)®[0) |1)®[1). (2  which ha a 0 inevery entry except foa 1 in theentry
One often omits thev, writing (2) in the more compact, but labeled by the integer 5 that the three Cbits represeabel

(11)

OO PFr OO0 O0OO0OOo
N o o~ W N P O

equivalent form, the entries by counting down 0,1,2... from the top. The small
numerals on the extreme right if11) make this labeling
[0)[0)  [0)[1)  [1)[0)  [1)[1), (3 explicit) This general rule for the column vector represent-
or, more readably, ing |x),, 1 in positionx and O everywhere else, is the
obvious generalization ta Cbits of the form for a 1-Chit
|00) 0D) |10) 11D, (4) column vector. It is an automatic consequence of standard

or, most compactly of all, using the decimal representation otensor-product notation.
the 2-bit number represented by the pair of Chits,
I1l. OPERATIONS ON CBITS

0} D)2 22 [3)2. . : :
In quantum computation almost all operations on Qbits are

The subscript 2 is necessary in this last form, because igyyersible (An example of an irreversible operation is Erase:
going from binary to decimal, we lose the information of ) 0y 11} |0). It is irreversible because one cannot re-
how many Cbits the vector describes, making it necessary t onstruct the input from the output: it has no inversthe

indicate in some other way whethi@) meang11)=|3), or  gingle exception is the operation or process called “measure-

|011)=[3)3 or |001})=|3),, etc. ment” described in Sec. VI. Measurement plays no role in
As this last remark illustrates, one represents the states @jzssical computatiofor, perhaps more accurately, a role so

n Chits as the 2 orthonormal vectors in 2dimensions, trivial that it is not recognized explicitly as a part of the
)y, O=x<2M, 6) computational procegsBecause Chit states turn out to be a

(tiny) subset of Qbit states, our reformulation of classical bits
given by then-fold tensor products ofi mutual orthogonal and what can be done with them need only consider revers-
pairs of orthogonal 2-vectors. Thus, for example, ible operations on the Cbits.
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There are just two reversible operations on a single Cbitoutpuy when acting orj0)|1) or |1)|0). The operatiors(1
(1) Do nothing(identity operatorl): —Z,Z,), on the other hand, acts as the identity |6i|1)
1/0)=]0), 1]1)=]1). (120  and|1)|0), while giving 0 on|0)|0) and|1)|1). Evidently
(2) Flip it (flip operatorX): both are projection operators in the full vector space spanned
: by all the 2-Cbhit basis state@More precisely the projection
X|0)=|1), X|1)=|0). (oy) (13)  operators are their linear extensions to the full space from the

- . .., basis on which they are defined. Quite generally any opera-
(I have indicated in parentheses the standard physicists N%on whose action is defined only on the classical basis states

tation; quantum computer scientists prefeto Ox ) can be identified with its linear extension to the whole vector
Less trivial reversible operations are available on tWOspace).

ggssFe?)?(Ssg?(ns’vErpec;(;::gtlg’s;a'mhange the values of the bits Because the operatid®yg, which exchanges the values of
' Chits 1 and 0, acts as the identity if their stat¢06) or |11)
S[xy)=yx). (14)  and as the double-flip operati, X, if their state is|01) or
In manipulating such muti-Cbit operations, it is useful to |10), we are led to the following operator representation of

have a compact notion for the action on a many-Cbit state 0P10:
operations that act on only a single one of the Chits. One

labels the Cbits by integers 0,1,2(starting with zero on the S10= 3(1+21Z0) + X1 Xo3(1~Z1Zo), (19)
right) associated with the power of 2 that each Cbit repreqgy
sents. Thus ifx has the binary expansior=8x;+4x, N
+2%,+Xo, then S10= 2(1+ 2325+ X1 X0 = Y1Y0), (20)
|X)a= [XaX2X1X0) = [X3)|X2) |X1)[X0) where
Y=XZ. (—ioy) (21)

=[X3)®[%2) ® |X1) ® |X0). (15 ( A 1 it "
: ; ; Note that 1-Qbit operators acting on different Qlglike X;
An operation that acts only on Chit #2 is

P y andZ;) commute even though the 1-Qbit operat@ksand

X;=1oX®1l®l. (160 Z) do not commute when acting on the same Qbitligress

Clearly the form with a subscript indicating which of the t0 remark that this “classical” derivation of the exchange
four Chits is subject to the flip operatiofis more transpar- ©OPerator is simpler and more transparent than the standard
ent than the explicit form of the operator tensor product orfil@tum mechanical derivation, which invokes the full-
the right. The subscript notation is unavoidable when larg!oWn theory of angular momentum. o
numbers of Chits are involved. From the definition of the Another important example of a 2-Cbit operation is the
operator tensor product it follows that, as desired, controlled-NOT or reversible XOR:
Xaol|X3) ®[%2) ®[X1) ®[X0)] = [X3) ®[X|X2)] @ [X1) ® [Xo). Cad®)y) = Xo) X ly) = )ly@x), (22)
(17) (where® denotes addition modulog 2which flips Chit O(the
It is possible to build up meaningful multi-Cbit operations target Cbit) if and only if Cbit 1 (the control Cbit) has the
out of single-Chit operations that, although formally well value 1. We can build this operation out of 1-Qbit projec-
defined, act an on individual Cbit in a way that has no meaniions,
ingful classical interpretation. Here, for example, is a mean-
ingless operation onpone Cbit which can be upsed to build up ~ C10= 2(1+2Z9) + Xo3(1-24) = (14 21+ Xo= XoZy).
meaningful multi-Chit operations: (23
_ __ In this form one sees a curious symmetry: interchanging the
Z|0)=10).  z|1) ). (o) (18) operationsX andZ has the effect of exchanging the roles of
The action ofZ on the statg1), multiplying it by —1,  target and control Cbit, convertin®;, to Co;.
although mathematically well defined on the 2-dimensional A classically meaningless operation that can be used to
1-Cbit vector space, produces a vector that has no meaningerform just this interchange is tiéadamard transform
within the context of Chits. Only the two vectdi®) and|1)
have meaning as the two distinguishable states of the Cbit i( ) 1 (1 1
1 -1

used to represent O and 1. Indeed, the introduction of a H:‘/Q +z ol

2"-dimensional vector space when we are only interested in ) ]

a single set of 2 orthonormal basis vectors could be viewed This transform takes the Cbit stat and|1) into the two
as extravagant conceptual overkill, except, perhaps, for thelassically meaningless linear combinationsv21/(|0)
pleasing structure introduced by the column-vector represeni|1>)- Because

. (24)

tation _of the tensor product._The only classic_ally meaningful X2=72=1, XZ=-ZX, (25)
reversible operations om Cbits are the (2)! different per-
mutations of the 2 basis vectors. it follows that

Nevertheless, a meaningless 1-Chit operation Ekean H2=1(X+2)2=1,

acquire classical meaning when used in conjunction with

other such meaningless operations in a multi-Cbit context. HX=(X+Z)X/\2=Z(X+2Z)/\2=ZH, (26)
As an important example, notice that the 2-Cbit operation

3(1+2,Z,) acts as the identity on the 2-Cbit sta{€s|0) and therefore

and|1)|1), while giving O (another classically meaningless HXH=Z, HZH=X. (27)
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Consequently. we can use four classically meaningless o@n understanding of quantum-computational algorithms it is
erationsH to achieve a classically meaningful task: inter- no more important to know about the detailed physics of
changing the role of target and control Cbits: such systems than it is to know about the detailed physics of

Coy=(HyHo) Cyo HyHo) transistors for an understanding of classical algorithms.

01 177071017110 70/ We shall return momentarily to the consequences of a set
of Qbits having such nonclassical states, but the first thing to
IV. QUANTUM BITS note is that by expanding the set of states from the classical

. , basis vectors to arbitrary unit vectors in the entire complex

We have represented thé &tates ofn Cbits as a basis of yector space spanned by the classical basis, we have already
2" orthonormal vectors in a "2dimensional vector space introduced one of the most profound differences between
constructed as the-fold tensor product of 2-dimensional  Cbits and Qbits:
vector spaces. Although the only classically meaningful op- The most general possible state of two Chits has the form
erations on these vector spaces consist of permutations of
these classical basis vectors, we have been able to construct W) =Ix1)[x0). (32)
such operations, or reveal relations among them, by introThis can be described as a state in which Cbit #1 has the
ducing classically meaningless operations that multiply basistate|x,) and Cbit #0, the statpx,): each individual Cbit
vectors by scalaréin particular 0 or—1) or (like the Had-  has a state of its own. On the other hand, the most general
amard transforni24)) take them into non-trivial linear com- possible state of two Qbits has the form
binations. One such construction, the fofB0) of the ex-
change operator, would achieve an even more pleasing form?) = @3[3)2t @2|2)2+ @[ 1)o+ aol0);

were we to introduce/— 1, replacingY with i Y. This would = a3|1)|1) + ay|1)|0) + @41|0)|1) + | 0)| ). (33

;lio restorellagothe_; symmetry, becaliseoy, iY=oy, and If each Qbit ha_d a state of it_s own, this 2-Qbit state WOL_lId b_e,
o are all hermitian. . . . under the obvious generalization of the rule for multi-Cbit
One is reminded of arithmetic before the introduction Ofgi4tes  the tensor product of those two 1-Qbit states. The
J=1. By introducing the “meaningless” quantity we are  2.Qpit state would thus have the general form
able to achieve great simplifications among certain relationf
connecting purely “meaningful” real numbers. The bold next |#)| )= (a|1)+ B|0))(¥|1)+ 5/0))
step is to declare the meaningless to be meaningful too, tak- _
ing full advantage of the expanded number system. @yDI)+ad1)[0)+£7(0)|1)+ £2I0)[0). (34
A major part of quantum mechanics consists of an analoBut the statgd¥) in Eq. (33) cannot have this form unless
gous expansion of the notion of the state of a Cbit, called invzag= asa; .
this extended setting a quantum bit @bit. We democrati- So in a general multi-Qbit state each individual Qbit has
cally expand the set of meaningful states from tAesgecial  no state of its own. This is the first major way in which Qbits
orthonormal states, known in this broader setting asthe-  differ from Cbits. States of Qbits in which no subset of
sical basis(or, in the prevailing but less informative termi- fewer thann have states of their own are calledtangled
nology, the computational basjsto arbitrary unit vectors Genericn-Qbit states are entangled. The amplitudes in the
from the entire vector space consisting of all linear combi-expansior(30) have to satisfy special constraints for the state

nations(called_snperposition)sof _classical basis states with {5 pe a tensor product of states associated with fewerthan
complex coefficientgcalled amplitudes. ?bits.
0

Thus the general state of a single Qbit is a superposition
the two classical-basis states
V. OPERATIONS ON QBITS

) =a|0)+B|1), (28)
where the amplitudesr and 8 are complex numbers con-  Quantum algorithms are constructed of operations that act
strained only by the normalization condition linearly on the state afl Qbits, while preserving the normal-

) 5 ization condition(31). The linear norm-preserving operators
|lal*+[B*=1. (29 on a complex vector space are tineitary operators. So the
The general state of Qbits has the form basic ingredients of a quantum algorithm are unitary opera-

tors on the 2-dimensional complex space:
)= > ) axX)n, (30) |W)—U|¥), U unitary. (35)
0=x<2

The classical operations—permutations of tHe c2assical
‘basis vectorémore precisely, linear extensions of the permu-
tations from the basis on which they are defined to the whole
) spacg—are special cases of such operators.
E lay|?=1. (31) The problem of how to implement physically such unitary
0=x<2" transformations is a question of quantum-computational en-
Physics offers many examples of physical systems—gineering, just as the question of how to produce permuta-
Qbits—whose natural description is in terms of states thations of the values of a collection of Chits is a question of
are precisely these peculiar generalizations of the states gfassical-computational engineering. All that need concern
classical bits that expand the constrained set of classical b#he designer of quantum-computational software, however, is
sis vectors to the entire complex vector space that they spathat unitary transformations constitute the full field of avail-
The most elementary physical examples are the polarizatioable operationgexcept for measurement, as described below
states of a photon or the spin states of a gpparticle. For  in Sec. V). For practical reasons—software designers should

with complex amplitudes constrained only by the normaliza
tion condition
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be willing to take into account constraints suggested by en- Things could not be more different for Qbits. If one has
gineering practicalities—the available set of unitary transfor-Qbits in the state

mations is usually restricted to those that can be built up out

of products of unitary transformations, each of which act

only on single Qbits or only on pairs of Qbits, and an impor- | ¥)n= 2 ax/X)n, (36)
tant part of the ingenuity of quantum programming is de- *

voted to hovc\j/ best th rt})uild tt)lp more inter:esting trafns‘cbo.rma’[here is nothing one can do to them to learn the values of the
tions as products of these basic units the case of Cbits 5 jiv desq, . There is only one way to extract any infor-

this is quite straightforward: an arbitrary permutationrof mation from the Qbits: taneasurethem. Measuringy Qbits

Cbits can be expressed as a product of 2-Cbit transz,,qists of subjecting them to a device that produegsa
positions—swap operatoys.

_ _ _ _ ) ; : . —on
So if we view the 2 states ofn classical bits as the™ display or a printoytan integerx in the range Ex<2

. . N . The only link between the stat@) one may have labored to
orthonormal basis vectorix), in a 2"-dimensional vector

space, and the reversible operations we can perform on {HEIPOSE on ‘he_(?b'ts and thg _value>ofe_vealed by th_e mea-
Chits as simply the permutations of these basis vectors, the?]uremer;t is this: the probability of getting the outpus just

the generalization ta quantum bits is extremely simple: the Px=|ay, wherea, is the amplitude ofx), in the expan-
states of Qbits consist of all the normalized complex lineaSion (36) of [¥),. This connection between amplitudes and
combinations of the classical basis vectors, and the reversibf§€ probabilities of measurement outcomes is known as the
operations we can perform on the Qbits consist of all unitaryBorn rule after the physicist Max Born. The condition that
transformations. The classical states and classical operatioff2€ States be unit vectors is thus the condition that the sum of
are a very small subset of the quantum states and quantume probabilities of all the possible measurement outcomes
operations. should be 1. _

It looks as if the extension from Chits to Qbits opens up an  You might think that by measuring repeatedly, one could
enormously richer landscape of computational possibilitiesat l€ast get some good statistics on the distribution of the
Although the state of one Cbit is specified by a single bit ofmagnitudega,|, but this possibility of additional partial in-
information, specifying the state of one Qbit requires infi-formation abouf¥) is ruled out by a second fundamental
nitely many bits of information: two complex numbers con- proviso of the Born rule: once the valuehas been indicated
strained only by the normalization conditiof29). And by the measurement, the state of theQbits is no longer
instead of being limited to shuffling a finite collection of Cbit |y but|x),. The postmeasurement st&t®, contains no
states through permutation, one can act on Qbits with a corirace of the information present in the premeasurement state
tinuous collection of unitary transformations. Because it iS|w) (beyond revealing that,#0) and is nothing more than

no more complex a matter to prepare a given state for Qbitge ¢|assical state associated with the valug ifdicated by
than it is for Chits and because it is no more complex he measuring device

matter to implement a broad range of unitary transformations Physicists, in a nomenclature that invites misinterpreta-
on Qbits than it is to implement permutations on Cbits, thetion, like to say that the sta{e¥’),, collapsesor is reducedo

extension from Cbits to Qbits would appear to bring us to athe statdx),, by the measurement. The conservative way to
n .

new level of computational power. LY ) .

But there is a catchDbits suffer from a major limitation PUt it iS simply to specify the relation between the states
that does not afflict Chits. Although their state contains Vas{mmedlately before and |mmed|ate_ly after the measurement,
amounts of information, givem Qbits in some statéw), N &Wway that suggests no mechanism for the change of state,

' ’ onfers no objective status on it, and makes no commitment

there is nothing you can do to the Qbits that enables you t . . ; i .
” . .~ "To what(if anything a change in state implies about wi#t
learn what| W) is. There is thus no way to extract anything anythiné hasyhap%)ened togthe Qbits the?nselves. i

like the huge amount of information contained in the ampli- You might wonder how we can learn anything at all of

tudesa,. _ _ . computational interest under these wretched conditions. The
What, then, are Qbits good for? How can we exploit theirgenera| trick is to produce, through a cunningly constructed
greater flexibility to do anything useful at all? unitary transformation, a superpositit86) in which most of
the amplitudesy, are zero or very close to zero, with useful
VI. MEASUREMENT: HOW TO SQUEEZE information being carried by any of the valuesxothat have
INFORMATION OUT OF QBITS a significant probability of being indicated by the measure-

A. The Borm rule ment. It is also important_ to be see_king information that,
' once possessed, can easily be confirnffed example, the
The very limited possibilities for extracting information is factors of a large numbgso that one is not misled by the

the second major way in which Qbits differ from Chits. If we occasional irrelevant low probability outcome.

haven Cbits in the general classical state,, finding out Clearly the action of a measurement on the state Qbits

what the state is—learning the numbesis unproblematic. is irreversible: any stat@, with non-zero amplituder, is

Indeed, it is so straightforward that the act of learning thecapable of becoming the stat®), after a measurement.

state is generally not even regarded as a formal part of th&€here is no way to reconstruct the input from the output.

computation. One simply look&®n a display or a printolit ~ Measurement is, however, the only irreversible operation on

Importantly, the state of the Chits is unaltered by this acqui-Qbits. All other operations are unitary.

sition of information. Once the computer has ceased to op- The Born rule contains, as a special case, the unproblem-

erate on the Chits, their state remajn$,, whether or not atic character of extracting information from Cbits. If the

anybody takes the trouble to ascertain the particular value aftate| W) of n Qbits happens to be one of thé 2lassical-

X. basis stategxo), then a,=0, x#X,, and ay =1. So the
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result of measuring the Qbits ig, with probability 1. The directly measuring alm+n Qbits. And indeed, if one ap-
second proviso of the Born rule then requires that the state gflies the generalized Born rule twice—first to the measure-
the Qbits is|xy), after the measurement—that is, the post-ment of them Qbits on the left and then to the measurement
measurement state continues to be what it was before thef the remainingn on the right—one recovers the ordinary
measurement. The statistical, state-altering character of th®orn rule.

outcome of a measurement of Qbits in a general state  Although the generalized Born rule does not follow from
becomes the deterministic, state-preserving, unproblematibe ordinary Born rule, it is equivalent to the ordinary Born
classical extraction of information when the state is one ofule supplemented by two very reasonable further conditions:
the 2" classical states. (1) Suppose that between timeandt’, no unitary trans-

A technical remark for physicists: In this approach toformations act on then Qbits on the left, but arbitrary uni-
quantum mechanics, it is useful to restrict the term “mea+ary transformations may act on timeQbits on the right—
surement” to what a broader and more conventional use oOfyat is, the only unitary transformations acting on the-n
the _ter“m would characterize as “r_neasurement in the Class'cgbits betweern andt’ are of the formU=1,,®V, . Then the
basis.” Because measurement in any other basis could bgiiqtica distribution of outcomes if ath+n Qbits are mea-

accomplished by applying an appropriate unitary . . .
transformation—one that takes the basis of interest into théuer at timet’ is unaltered if them Qbits on the left are

e X
classical basis—followed by measurement in the classicd'€@sured at any earlier time betweeandt’. Informally,
basis, this restriction of the scope of the term “measure®Nce the computer ceases from further action on any group

ment” does not preclude more general possibilities. of Qbits, you do not have to wait to the end of the full
computation before measuring those Qbits.

(2) For a group ofn Qbits to be in the stateéP) means
nothing more(or lesg than this: If the Qbits are measured
after the application of an arbitrary unitary transformatign

There is a generalization of the Born rule, not often ex-then the distribution of measurement outcomes will be that
plicitly noted in quantum-mechanics texts, that is neededpecified by the Born rule fan Qbits in the state/|d).
whenever some but not all of the Qbits are measured, as The most important principles formulated in Secs. 11-VI
often happens in a quantum computation. Suppose we havge in Table I, which summarizes the relevant features of
m+n Qbits, and we decide to measure ontyof them. By  Qbits by contrasting them to the analogous features of Chits.
representing then+n bit numberz asx,y, the concatena- In the table | have introduced the term “Bit,” with an upper-
tion of them andn bit binary strings representingandy, caseB, to mean “Qbit or Cbit”(in contrast to “bit,” with a

B. Generalization of the Born rule to partial
measurements

we can write the state of thm+n Qbits as lower-caseb, which means “0 or 1).
I‘I’>m+n=ny Ay XY men - (37 vII. CAUTIONARY REMARKS AND QUASI-

. _ PHILOSOPHICAL REFLECTIONS
Suppose that we decide to measure onlyrth®bits on the

left. (The rule for the more general choice of which Qbits to A, An important warning
measure is the obvious generalization of the one enunciated

below) The generalized Born rule states that the measure- It is extremely important to avoid a tempting
ment will indicatex, 0<x< 2™, with probability misinterpretation—a gross oversimplification—of quantum

superpositions of classical states, as illustrated by the follow-
_ 2 ing simple example:
Px= OS%Z" |yl (38) A Qbit in the statd#)=1A2|0)+1A2|1) is notthe same
as a Qbit that is either in stat@) or state|1) with equal

and that after the value of is indicated, the state of tha probability, even though in either case a measurement will

+n Qbits is changed front¥ ), 10 [X) | D), where indicate 0 or 1 with equal probability. To see that the two
) cases are inherently different, suppose a Hadamard transform
D) n=py 2 axyl¥)n. (39  H=1W2(X+2Z) is applied to the Qbit just before the mea-
y

surement is made. Because
If one immediately follows a measurement of tneQbits
) e : 1 1
on the left, with a measurement of the remainm@bits on H|0)=—(|0)+|1)), H|1)=-—(]|0)—]|1)), (40)
the right, then this measurement ought to be tantamount to V2 V2

Table I.
CLASSICAL versus QUANTUM BITS Chits Qbits
States ofn Bits [X),, O=x<2" Say|X)n, 2|a,l?=1
Subsets ofn Bits Always have states Generally have no states
Reversible operations on states Permutations Unitary transformations
Can state be learned from Bits? Yes No
To get information from Bits Just look Measure
Information acquired X x with probability | a,|?
State after information acquired Same: still|x) Different: now|x)
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in the second case, whether the initial statfjsor |1), the  property of the Qbits is that one can then succumb to the

measurement aftét is applied will continue to indicate 0 or temptation to believe that the application of a series of uni-

1 with equal probability. But in the first case, in which the tary transformations to the Qbits implements a physical com-

initial state is|¢)=1~2(]0)+|1)), we haveH|¢)=|0) so  putation of all the resulting amplitudes, . The clue that the

the measurement aftét is applied must necessarily indicate amplitudes have not all been calculated lies in the fact, noted

0. above, that given the Qbits there is nothing whatever you can

A Qbit in a superposition of classical-basis states is disdo with them to reveal the values of those amplitudes.

tinctly different from a Qbit that is in one or the other of = There are nevertheless some who believe that all the am-

those classical states with probabilities given by the squareplitudes «, have the status of objective physical quantities,

moduli of the corresponding amplitudes. Superpositions havaaccessible though those quantities may be. Such people

no classical interpretation. They asai generis an intrinsi-  then wonder how that vast number of high-precision calcu-

cally quantum-mechanical construct, whose meaning derivelations (1§° different amplitudes if you have 100 Qbjits

only from the rules that characterize the reversible operationsould all have been physically implemented. Those who ask

(unitary) that can be performed on them and the availablesuch questions like to provide sensational but fundamentally

means(measurementfor extracting information from them. silly answers involving vast numbers of parallel universes,
invoking a point of view known as themany worldsinter-
pretation of quantum mechanics. My own opinion is that,
imaginative as this vision may appear, it is symptomatic of

B. Meaning of the quantum state a lack of a much more subtle kind of imagination, which
can grasp the exquisite distinction that quantum physics

People have been arguing about the meaning of the quamas forced upon us, between quantum states and objective

tum state ever since the concept first appeared, with no indproperties.

cation that we are getting any closer to a consensus. These

conceptual issues are unimportant for an understanding of

guantum computation which only requires one to know how

states are built up from other statédsy appropriate unitar , ,

transformation)sarﬁ)d how informatio&nwcarﬁ) %e pextracted frgm C. Where’s Planck’s constant?

Qbits in a given statéby measurement, according to the Where’s h-bar? Where is h-bar?!

Born rules. —Disgruntled quantum opticiah.

The initial state on which the unitary transformations op- | jke my disapproving colleague, some physicists may be
erate is usually a classical-basis stadg,. Such a state can gppalled to have finished what purports to be an exposition
be unambiguously identified as the post-measurement stag# quantum mechanics—indeed, of appli@eell, gedanken
of n Qbits after a measurement that indicated the value applied quantum mechanics—without ever having run into
From this point of view the computational process beginsPlanck’s constant. How can this be?
and ends with a measurement, and the entire role of the stateThe answer goes back to my first reason why enough
of the Qbits at any stage of a succession of unitary transforquantum mechanics to understand quantum computation can
mations is to encapsulate the probability of the outcomespe taught in a mere four hours. We are interested in discrete
should the final measurement be made at that stage of th@-state systems and discret@nitary) transformations. But
process, or to enable one to calculate new outcome probabilPlanck’s constant only appears in the context of continuously
ties, should further unitary transformations be applied beforénfinite systemgfor example, position eigenstajesnd con-
the measurement. tinuous families of transformatior{for example, time devel-

The notion that the state of Qbits is simply a convenient opmenj that act on them. Its role is to relate the conven-
compact mathematical device for calculating the correlationsional units in which we measure space and time, to the units
between the outcomes of two measurements on those Qbitis, which it is natural quantum-mechanically to take the gen-
between which an arbitrary unitary transformation may haveerators of the unitary transformations that produce transla-
been applied, is often associated with the constellation ofions in space or time.
ideas about quantum mechanics called @@enhagen in- If we are not interested in location in continuous space and
terpretation It is to be contrasted with the notion that the are only interested in global rather than infinitesimal unitary
state ofn Qbits is an objective physical property of those transformations, thefi need never enter the story. The engi-
Qbits, in the same strong sense that we can view the state ofer, who must figure out how to implement unitary trans-
n Chits—the unique valug that they represent—as an ob- formations acting over time on Qbits located in different re-
jective property of those Chits. People who regard the quargions of physical space, must indeed deal witland with
tum state as objective in this sense tend to make a fuss abodgmiltonians that generate the unitary transformations out of
the fact that there are two quite different ways in which Qbitswhich the computation is built. But the designer of algo-
can change: deterministically and continuouslyne builds ~ rithms for the finished machine need only deal with the re-
each unitary transformation out of many infinitessimal 9nessulting unitary transformations, from which has disap-
via unitary transformations, and statistically and discontinufeared as a result, for example, of judicious choices by the
ously via measurements. This dichotomy looses its content #ngineers of the times over which the interactions that pro-
one replaces “Qbits” by “the state of Qbits,” and recognizes duce the unitary transformations act.
that the state is nothing but a catalog of how different unitary Deploring the absence df from expositions of quantum
transformations will result in different distributions of mea- computer science is rather like complaining that th¥
surement outcomes—classical basis states, which alone canrve for ap-n junction never appears in expositions of
be viewed as objective. classical computer science. It is to confuse compstence

Another pitfall of taking their state to be an objective with computerengineering
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VIII. THAT IS ALL YOU NEED TO KNOW A detailed view of how to erect the edifice of quantum
computation on this foundation can be found in Chapters
2-5 of my lecture note$Chapter 6 describes a few further
pics in the broader area of quantum information that can be
uilt on this same foundation. | do not delve into these mat-
ters here because the subject of this essay has been how to

f ional he kelsthe introducti t densi - teach computer scientists quantum mechanics—not quantum
unctionals on the kejsthe introduction of density matrices, omntation. | have therefore tried to restrict references to

or the useful connection betweén Y, andZ and the group  he computational applications of quantum mechanics to

of 3-dimensional rotations, are all technical mathematical re,ose that motivate the quantum-mechanical formalism, and
finements within the basic structure of the complex vectohyqqe that address in broad general terms broad general ques-
space of Qbit states. They require no new physical principle§s s that the formalism gives rise teuch as “How can this

for their development. ; : p
. . . ossibly lead to anything useful
Sections 11-VI provide all the quantum mechanics onep y yihing P

needs to develop fully the factorization algorithm of Peter

Shor, the s_earch algorithm of Lov Grover, and their Ie_lter CKNOWLEDGMENTS
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If this far from modest extension of the scope of the for- LeCturicn?I?Zi n:lrl]cja d&‘/"j?;*gfﬁn /"’(‘15;!;’1’1‘;1/8(;‘& 8§a1;‘tm*1’e f‘%‘;’;d at
malism proves too blg .a pl”.for comput'er.suentlsts to swal- pedagogical approach sketched below is fleshed out in Chapter 1. Alterna-
low, one can compromise with a more limited model of error e introductions to quantum mechanics in the context of quantum com-
correction, in which the computer contains large numbers of putation have been given by Eleanor G. Rieffel and Wolfgang Polak, “An
extraneous Qbits. Ideally, these irrelevant Qbits are notintroduction to quantum computing for non-physicists,” quant-ph/
coupled to the Qbits of interest, in the sense that all unitary 9809016, and by Michael A. Nielsen and Isaac L. Chuang in their excel-
transformations act 0n|y on the Qbits of interest or dﬂl"]' lent textbook, Quantum Computation and Quantum Informati@am-
importantly and uninterestinglyon the extraneous Qbits, ,>rdge University Press, 2000,

. . " 3Qubit seems to have been used first in print by Benjamin Schumacher,
Bgt unfortunately, there is a smal! amount of unintended COU- “Guantum coding,” Phys. Rev. &1, 2738-2747(1995. A brief history
pling between the two sets of Qbits—unitary transformations of the term can be found in the Acknowledgments of this paper Although
whose action is not restricted to either the relevant or irrel- qubithonors the English rule thatshould be followed by, it ignores the
evant Qbits—whose disruptive action on the relevant Qbits it equally powerful requirement thau should be followed by a vowel. My
is the task of error correction to undo. One can then remark, guess is that it has gained acceptance because it visually resembles an
as an aside, that parts of the world outside the comgoter I"?‘”Cie”t _Err“?"s*‘h“”“ °f.diSt"".”ce'htheDhom?]”ﬁm“t.’it To e its “”%a"]l'

. . . iness with fresh eyes, imagine that Dirac had writtgmumbeinnstead o
computatlonally irrelevant internal degrees of freedom of the g-number or that one erased transparencies and cleaned one’s ears with
computey that cannot be be perfectly isolated from the parts g ips
that do the computation can always be well modeled as justprivate communication to the author at the International Conference on
such collections of extraneous Qbits. Quantum Information, Rochester, June 2001.

Armed with the contents of Secs. II-VI, one is ready to
embark on the exposition of quantum computer science. T
be sure, there will be times when it is convenient to expan
upon the minimal formalism developed above. But such ex
pansions, for example the introduction bfas (as linear
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