Axioms of Quantum Mechanics — long version

(Underlined terms are linear algebra concepts whose definitions you need to know.)

Axioms:

- I. The state of a system is a vector, $|\psi\rangle$, in a <u>Hilbert space</u> (a complex vector space with a <u>positive definite inner product</u>), and is normalized: $\langle \psi | \psi \rangle = 1$.
- II. An observable (allowed measurement) is a choice of a hermitean operator, \widehat{M} . By the spectral theorem, $\widehat{M} = \sum_{i} \mu_i \widehat{P}_i$, where μ_i are its <u>eigenvalues</u> and \widehat{P}_i are the <u>orthogonal projection operators</u> onto their corresponding <u>eigenspaces</u>.
- **III.** The only possible *outcomes* of measuring \widehat{M} are one of its eigenvalues. I denote this outcome of this measurement by " $M = \mu_i$ ".
- **IV.** The *probability* of observing a given possible outcome, $M = \mu_i$, of such a measurement is the norm-squared of the projection of the state onto the eigenspace of the eigenvalue μ_i . In formulas, this is

$$\mathcal{P}(M=\mu_i) = \langle \psi | \widehat{P}_i | \psi \rangle = \left\| \widehat{P}_i | \psi \rangle \right\|^2.$$

V. Once we observe the outcome $M = \mu_i$, the state changes as a result of the measurement from its state $|\psi\rangle$ immediately before the measurement, to a new state $|\psi'\rangle$ immediately after the measurement, given by its normalized projection onto the eigenspace corresponding to the observed eigenvalue. In formulas, this is

$$|\psi\rangle \xrightarrow{\text{meas. } M=\mu_i} |\psi'\rangle = \frac{\widehat{P}_i |\psi\rangle}{\sqrt{\mathcal{P}(M=\mu_i)}} = \frac{\widehat{P}_i |\psi\rangle}{\left\|\widehat{P}_i |\psi\rangle\right\|}$$

VI. The time evolution of the state of an isolated system (i.e., when it is not being measured or otherwise interacting with the external world) is given by $|\psi(t)\rangle = \widehat{U}(t)|\psi(0)\rangle$, where the <u>unitary</u> time evolution operator is given by $\widehat{U}(t) = \exp\{-it\widehat{H}/\hbar\}$ where \widehat{H} is the hermitean energy operator (also known as the Hamiltonian operator).