Lecture 8 a Worked problem

- Consider a thin sphere of radius R and surface charge density $\sigma=\sigma_{0} \cos \theta$ in spherical coordinates. Find the multipole expansion of $V(\vec{r})$ for $r \gg R$.
- The multipole expansion is

$$
\begin{aligned}
& V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{l=0}^{\infty} \frac{M_{l}(\hat{r})}{r^{l+1}} \text { with } \\
& M_{l}(\hat{r}) \doteq \int d r^{\prime} \rho\left(\vec{r}^{\prime}\right) P_{l}\left(\cos \theta^{\prime}\right) \cdot\left(r^{\prime}\right)^{l}
\end{aligned}
$$

where ρ is the (volume) charge density and $\cos \theta^{\prime}=\hat{r} \cdot \hat{r}^{\prime}$ is the angle between \vec{r} and \vec{r}^{\prime}.

- In this problem we are give a surface charge distribution:

So we can write the volume charge density as $\rho(\vec{r})=\sigma \delta(r-R)$

$$
=\sigma_{0} \cos \theta \delta(r-R)
$$

in the spherical coordinates shown:

$$
\vec{r}=(r, \theta, \phi)
$$

- We want to find $V(\vec{r})$

I have set $\phi=0$ for \vec{r} without loss of geurolity since the problem is rotationally symmetric around the z-axis. Note: I have renamed the θ-coordinate of \vec{r} to $\theta=\alpha \sin \varphi I$ already used " θ " to denote a position on the spherical charge distribution.

- Now we need to choose a coordinate system for the \vec{r}^{\prime} coordinates that we integrate over to find $M_{l}(\hat{r})$.

The trice is to choose the z^{\prime}-axis aligual along \vec{r}, and the x^{\prime}-axis to be is the $x-z$ plane:

(so y^{\prime}-axis $=y$-axis). Then θ^{\prime} is the angle between \vec{r} and \vec{r}^{\prime}, so we can use the definition of the multiple as is:

$$
\begin{aligned}
M_{l}(\hat{r})= & \int d r^{\prime} \rho\left(\vec{r}^{\prime}\right) \cdot P_{l}\left(\cos \theta^{\prime}\right) \cdot\left(r^{\prime}\right)^{l} \\
= & \int_{0}^{\infty}\left(r^{\prime}\right)^{2} d r^{\prime} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} \int_{0}^{2 \pi} d \phi^{\prime} \cdot \\
& \sigma_{0} \cdot \cos \theta \cdot \delta\left(r^{\prime}-R\right) \cdot\left(r^{\prime}\right) \cdot P_{l}\left(\cos \theta^{\prime}\right)
\end{aligned}
$$

- But use now need to write θ in terms of θ^{\prime} :

$$
\cos \theta=\hat{r}^{\prime} \cdot \hat{z}=\hat{r}^{\prime} \cdot\left(\cos \alpha \hat{z}^{\prime}-\sin x \hat{x}^{\prime}\right)
$$

$$
\begin{aligned}
& =\cos \alpha\left(\hat{r}^{\prime} \cdot \hat{z}^{\prime}\right)-\sin \alpha\left(\hat{k}^{\prime} \cdot \hat{y}^{\prime}\right) \\
& =\cos \alpha\left(\cos \theta^{\prime}\right)-\sin \alpha\left(\sin \theta^{\prime} \cos \phi^{\prime}\right)
\end{aligned}
$$

So we have

$$
\begin{aligned}
& M_{l}(\hat{r})=R^{l+2} \sigma_{0} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} \int_{0}^{2 \pi} d \phi^{\prime} \\
& \cdot\left[\cos \alpha \cos \theta^{\prime}-\sin \alpha \sin \theta^{\prime} \cos \phi^{\prime}\right] \cdot P_{l}\left(\cos \theta^{\prime}\right)
\end{aligned}
$$

- The ϕ^{\prime} integral of the first term $=2 \pi$ and $=0$ for the second term, so

$$
\begin{aligned}
M_{l}(r) & =R^{l+2} \sigma_{0} 2 \pi \cdot \cos \alpha \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} \cos \theta^{\prime} P_{l}\left(\cos \theta^{\prime}\right) \\
& =R^{l+2} \sigma_{0} 2 \pi \cos \alpha \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} P_{1}\left(\operatorname { c o s } \theta ^ { \prime } P _ { l } \left(\cos \theta^{\prime}\right.\right. \\
& =R^{l+2} \sigma_{0} 2 \pi \cos \alpha \cdot \frac{2}{2 l+1} \cdot \delta_{l, 1} \\
M_{l}(\hat{r}) & = \begin{cases}\frac{4 \pi}{3} R^{3} \sigma_{0} \cos \alpha & l=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where I used the or tho goadity
relation for Legendre polynomials

$$
\int_{0}^{\pi} \sin \theta \theta \theta P_{l}(\cos \theta) P_{l}(\cos \theta)=\frac{2}{2 l+1} \delta_{l, e^{\prime}} .
$$

- So only the dipole term survives! Using $\cos \alpha=\hat{z} \cdot \hat{r}$ we can waite

$$
M_{1}(\hat{r})=\frac{4 \pi}{3} R^{3} \sigma_{0} \tilde{z} \cdot \hat{r} \doteq \stackrel{\rightharpoonup}{p} \cdot \hat{r} \text {, so }
$$

our final ancwer is:

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{R} \cdot \hat{r}}{r^{2}} \quad \omega / \quad \vec{P}=\frac{4 \pi}{3} R^{3} \sigma_{0} \hat{z}
$$

